
3

Understanding the Networking Performance of Wear OS

XIAO ZHU, University of Michigan, USA
YIHUA ETHAN GUO, Uber Technologies, Inc., USA
ASHKAN NIKRAVESH, University of Michigan, USA
FENG QIAN, University of Minnesota – Twin Cities, USA
Z. MORLEY MAO, University of Michigan, USA

Networking on wearable devices such as smartwatches is becoming increasingly important as fueled by
new hardware, OS support, and applications. In this paper, we conduct a first in-depth investigation of the
networking performance of Wear OS, one of the most popular OSes for wearables. Through carefully designed
controlled experiments conducted in a cross-device, cross-protocol, and cross-layer manner, we identify serious
performance issues of Wear OS regarding key aspects that distinguish wearable networking from smartphone
networking: Bluetooth (BT) performance, smartphone proxying, network interface selection, and BT-WiFi
handover. We pinpoint their root causes and quantify their impacts on network performance and application
QoE. We further propose practical suggestions to improve wearable networking performance.

CCSConcepts: •Networks→Networkprotocols;Networkperformance evaluation; •Human-centered
computing → Ubiquitous and mobile devices;

Additional Key Words and Phrases: Wearable; Bluetooth; WiFi; Proxy; Interface Selection; Handover

ACM Reference Format:
Xiao Zhu, Yihua Ethan Guo, Ashkan Nikravesh, Feng Qian, and Z. Morley Mao. 2019. Understanding the
Networking Performance ofWear OS. Proc. ACMMeas. Anal. Comput. Syst. 3, 1, Article 3 (March 2019), 25 pages.
https://doi.org/10.1145/3311074

1 INTRODUCTION
Smart wearable devices are becoming increasingly popular. Take smartwatches, arguably the most
important type of smart wearables, as an example. According to a market research report published
recently [9], the global market value of smartwatches was estimated to be $10.2 billion in 2017 and
will experience an annual growth rate of 22.3% from 2018 to 2023.

In the literature, several efforts have been made towards understanding and improving the OS
execution performance [48, 49], power management [51], graphics and display [54], storage [37],
and user interface [20, 78] of wearable OSes. In this paper, we investigate an important yet under-
explored component: the wearable networking stack. We conduct to our knowledge a first in-depth
investigation of the networking performance of Wear OS, one of the most popular OSes for wear-
ables. Wear OS is a version of Google’s Android OS tailored to small-screen wearable devices. Used

Authors’ addresses: Xiao Zhu, University of Michigan, Ann Arbor, MI, USA, shawnzhu@umich.edu; Yihua Ethan Guo, Uber
Technologies, Inc. San Francisco, CA, USA, guoyihua@uber.com; Ashkan Nikravesh, University of Michigan, Ann Arbor, MI,
USA, ashnik@umich.edu; Feng Qian, University of Minnesota – Twin Cities, Minneapolis, MN, USA, fengqian@umn.edu; Z.
Morley Mao, University of Michigan, Ann Arbor, MI, USA, zmao@umich.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2019 Association for Computing Machinery.
2476-1249/2019/3-ART3 $15.00
https://doi.org/10.1145/3311074

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 3. Publication date: March 2019.

https://doi.org/10.1145/3311074
https://doi.org/10.1145/3311074

3:2 X. Zhu et al.

by a wide range of smartwatches and potentially other wearables, Wear OS is expected to account
for 41.8% of the market share of smartwatch OSes in 2020 [7].
Wearable networking is important. Take smartwatches as an example. One may argue they

only incur light traffic such as push notifications. This might be true for the current smartwatch
ecosystem where traffic flows are largely small, short, and bursty [51]. However, we envision
that future wearable apps will be more network-intensive by incurring much heavier network
activities as fueled by new hardware, OS support, and applications. For example, recently debuted
speaker/LTE-capable watches such as LG Watch Urbane 2nd Edition allow users to directly make
hands-free VoIP calls; the latest Wear OS 2.x allows standalone apps on wearables; also, many
emerging wearable applications incur heavy network traffic such as continuous computer vision on
smart glasses [23, 31], remote camera preview [6], real-time screen projection [2], and network-level
collaboration between phone and watch [52].
Wearable networking is also different from smartphone networking that has been well studied

in the past decade. First, wearables oftentimes do not directly access the Internet; instead, it
uses its paired smartphone as a “gateway”, which, if not carefully designed, may incur additional
performance degradation. Such a gateway mode accounts for 84% of the daytime usage period as
measured by a recent user study [51]. Second, the communication between a wearable and the
phone is usually through Bluetooth (BT) or Bluetooth Low Energy (BLE), whose characteristics
are vastly different from WiFi and cellular that dominate the smartphone interface usage; also the
cross-layer interaction between BT and upper-layer protocols such as TCP remains underexplored.
Last but not least, due to BT’s short range, network handovers frequently occur on a wearable:
when it moves away from the phone, the BT connectivity will be torn down and the wearable has
to use standalone WiFi or LTE to communicate with the external world.

Understanding the networking performance of commercial wearables is challenging, as it involves
multiple devices, networks, and protocols, which incur complex interactions. The proprietary nature
of Wear OS makes it even harder to gain deep visibility into the wearable networking stack. Note
that unlike Android for handheld devices, Wear OS is not open-source.

To address these challenges, we first build a wearable networking testbed consisting of commodity
Wear OS based smartwatches, off-the-shelf smartphones, commercial wearable apps, as well as
a series of tools we developed for instrumenting the system and collecting various types of data.
We then leverage the testbed to conduct controlled experiments in a cross-device, cross-protocol,
and cross-layer manner. Through judiciously designed experiments, we demystify the Wear OS
networking stack and quantify how it affects the wearable networking performance. Our key
findings consist of several serious performance issues regarding all three aforementioned aspects
that distinguish wearable networking from smartphone networking.
•We perform a comprehensive analysis of the BT radio state machine on both the wearable and its
paired phone. We find tricky yet critical differences of the state machine behaviors between the
two sides. They lead to our key discovery that due to the wearable’s unique BT radio management
policy and its interplay with its counterpart on the phone, a download session on the wearable
frequently (e.g., every few seconds) experiences “blackout” periods lasting for about 1 second (§3).
•When acting as a gateway proxy for a wearable, the phone dramatically inflates the end-to-end
(server to wearable) latency to 30+ seconds due to its incurred “bufferbloat”. We then break down
the end-to-end latency into various components, and identify the root cause to be the phone-side
TCP receive buffer, whose configuration does not take into account the path asymmetry between
the wearable-phone path and the phone-server path (§4).
•Wearables are equipped with multiple network interfaces such as BT and WiFi. When multiple
networks are available, the Wear OS’s default interface selection policy strictly prefers one inter-
face (e.g., BT) over others (e.g.,WiFi). However, we find that such a strategy oftentimes leads to

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 3. Publication date: March 2019.

Understanding the Networking Performance of Wear OS 3:3

Table 1. Study summary: examined aspects, methodologies, key findings, root causes, and recommendations.

Aspect Methodologies Key findings Root causes of inefficiency Recommendations
BT radio
resource
management
(§3)

Cross-device state ma-
chine inference.

Different state machine
models on phone and
wearable; BT download
experiences frequent
“blackout” periods.

Undesired BT sniff
(sleep) mode is triggered
during a continuous
download.

BT state machine
should be aware of
bidirectional traffic
and judiciously deter-
mine when to enter
the sniff mode.

Proxying
at paired
smartphone
(§4)

Breakdown analysis of
end-to-end latency.

Phone-side bufferbloat
inflates the end-to-end
latency to tens of sec-
onds; real-time apps’ per-
formance is severely af-
fected.

Multiple buffers at differ-
ent layers on the smart-
phone proxy, in partic-
ular the large TCP re-
ceive buffer, cause the
high buffering delay.

The proxy should be
aware of the path
asymmetry between
server-phone and
phone-wearable
paths.

Network
interface
selection
(§5)

Quantify energy-
performance tradeoffs
using real wearable
apps; develop a mul-
tipath framework for
wearables.

Wear OS’s default inter-
face selection policy is of-
ten suboptimal; BT+WiFi
multipath brings limited
performance gain.

Static interface prefer-
ence is not aware of apps’
QoE requirements; BT
and 2.4 GHz WiFi cause
interference.

Need QoE-aware in-
terface selection; need
5GHz WiFi support
on wearables; need
BT-aware multipath
scheduler.

Network
handover
(§6)

Conduct an IRB-
approved user study;
examine each phase of
a handover process.

Frequent BT-WiFi han-
dovers in the wild; short
BT range on commodity
wearables; BT-WiFi han-
dovers may take 60+ sec-
onds.

Handovers are per-
formed reactively
instead of proactively;
both OS and app logic
contribute to high
handover delay; lack
protocol/OS support for
handover.

Proactively predict a
handover; need mul-
tipath support to fa-
cilitate seamless han-
dovers.

suboptimal tradeoffs between performance and energy consumption. In addition, we explore the
feasibility of performing multipath transport (simultaneously using WiFi and BT) on wearables,
and identify potential obstacles such as the interference between BT and 2.4GHz WiFi (§5).
• BT’s short communication range makes handovers occur frequently on wearables. Due to insuffi-
cient protocol support and poor cross-layer coordination, a BT-WiFi handover may last for more
than 60 seconds, leading to significant disruption of the wearable application performance. By
looking into each phase of a handover, we find that both the OS and user application are responsible
for such unacceptably long handover delays (§6).
The above performance inefficiencies are caused by the poorly designed networking stack of

Wear OS. Our identified issues appear on all 8 wearables of heterogeneous vendors and Wear OS
versions (including the latest version as of December 2018) as well as a variety of paired phones
as tested by us using synthetic and real apps. To mitigate the identified performance impairment,
we design, implement, and evaluate several readily deployable mitigation solutions including
the following. (1) We develop a lightweight module that completely eliminates the undesired
behavior of the wearable’s BT radio state machine (§3.3), (2) We develop a simple yet effective flow
control scheme that mitigates the phone-side bufferbloat problem, achieving up to 78x latency
reduction with less than 3% of the throughput decrease (§4.3), (3) We design and implement to
our knowledge a first multipath transport framework for wearable devices that enables adaptive
interface selection, multi-network bandwidth aggregation (§5.2), and smooth handovers between IP
and non-IP networks (§6.4). For example, our improved handover scheme reduces the BT-to-WiFi
handover delay from more than 28 seconds to less than 0.6 seconds with negligible energy overhead
incurred. Table 1 summarizes the key findings made in this paper. Note that while some identified
issues such as those incurred by the BT state machines can be relatively easily fixed, tackling

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 3. Publication date: March 2019.

3:4 X. Zhu et al.

Client app
Wear OS proxy

BT stack

Wear OS
proxy

BT stack

TCP/IP
stack

Server
app

TCP/IP
stack

RFCOMM

Baseband

TCP/IP
stack

L2CAP

Radio

HCI

host

controller
uplink

downlink

Fig. 1. The measurement testbed (middle) and the protocol stacks of the wearable, phone, and server (left
and right).

other aspects such as bufferbloat, handover, interface selection, and multipath for wearable devices
requires considerable efforts due to various challenges in the wearable ecosystem as mentioned
earlier. We believe our work initiates this research thrust, and more future research is needed along
this direction.
Overall, this paper makes contributions in three aspects. (1) We develop novel methodologies

for measuring and analyzing the wearable networking performance. (2) We discover severe and
previously unknown performance issues of Wear OS’s networking stack. (3) We identify their root
causes and application performance impact, and propose corresponding mitigation strategies.

2 BACKGROUND AND METHODOLOGY
The wearable networking is unique in several aspects, making analyzing its performance and
resource consumption challenging.
• Instead of accessing the Internet directly, a wearable typically leverages a paired mobile device
such as a smartphone as a gateway.
•Compared to performing pure TCP/IP networking on a regular host, wearable networking involves
both BT and TCP/IP. In particular, since BT by default does not speak TCP/IP, the wearable OS
typically introduces a pair of proxies on the smartphone and the wearable to bridge TCP/IP and BT.
For the phone-side proxy, it maintains TCP connections to remote servers on behalf of the wearable.
It strips off TCP/IP (BT) headers for downlink (uplink) traffic, and encapsulate the application data
into BT (TCP/IP) packets. A reverse operation is performed at the wearable-side proxy, which also
maintains local TCP connections with client apps.
• The BT protocol stack itself is complex. It consists of higher-layer protocols realized in the host
(software) and lower-layer functions implemented in the controller that resides on the BT chip. The
host and controller are bridged by the Host-Controller Interface (HCI). The BT performance can
thus be affected by multiple factors at different layers as well as its interplay with TCP/IP and the
aforementioned proxying mechanism.
• Wearable OS developers usually keep their implementation proprietary. Unlike Android for
handheld, Wear OS is not open-source.
To address the above challenges, our high-level approach is to develop a holistic testbed and a

suite of measurement tools that comprehensively examine not only each of the aforementioned
components, but also the cross-device, cross-protocol, and cross-layer interplay on real wearables
over real wearable apps’ workload. We next describe our testbed and measurement toolkit design.

2.1 Wearable Networking Testbed
We set up a testbed shown in Figure 1 to cover common usage scenarios for a wearable to com-
municate with the external world. They include communicating locally with the phone over BT,
accessing the Internet directly with WiFi/LTE, as well as surfing the Internet via the smartphone

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 3. Publication date: March 2019.

Understanding the Networking Performance of Wear OS 3:5

Table 2. Mobile devices used in our experiments.

Smartwatch Wear OS Paired Smartphone
Model Version Smartphone Android OS

LG Urbane 1.5 Nexus 5 6.0.1
LG Urbane 2.15 Nexus 5X 7.1.1

LG Urbane 2nd Edition 2.0 Samsung Galaxy S5 5.1.1
LG Urbane 2nd Edition 2.20 Pixel 2 9.0.0

Huawei Watch 2.0 Nexus 6P 7.0.0
Huawei Watch 2 2.9 Nexus 5X 7.1.1
Asus ZenWatch 3 2.0 Nexus 5 6.0.1
LG G Watch R 2.0 Nexus 5 6.0.1

as the gateway (called the CPROXY mode in Wear OS). Our testbed consists of 8 state-of-the-art
smartwatches listed in Table 2. All of them support BT and WiFi while some higher-end watches
such as LG Urbane 2nd Edition and Huawei Watch 2 support LTE as well. The OSes we study
include the latest release (Wear OS 2.20 released in December 2018) as well as the older Android
Wear OSes 2.x and 1.x. Our measurement findings apply to all OSes unless otherwise mentioned.
The Internet server we use is equipped with a quad-core 3.6GHz CPU and 16GB memory, running
Ubuntu 16.04. We run on the testbed the workload generated by our measurement tools (described
shortly) and real apps that perform bulk data transfer, constant bitrate transfer, and real-time
streaming. We also employ a Samsung SNH-V6414BN SmartCam to stream real-time video to
smartphones and smartwatches.

2.2 The Wearable Network Measurement Tools
Given a lack of tools for measuring and analyzing wearable network performance especially over
BT, we also develop a suite of tools to fill this gap. They consist of software programs for both
active and passive measurements. We will use them to conduct carefully crafted black-box testing
without requiring the OS source code. This is to our knowledge the most comprehensive toolkit for
wearable networking performance analysis and diagnosis.

For active measurements, we develop a custom server application running on the server and
a custom client app running on the wearable. Supporting all aforementioned communication
paradigms, the client and server apps can exchange data using two traffic patterns: bulk data
transfer and constant bitrate over the uplink (from the wearable), downlink (to the wearable), or
both. Our application also allows automatic reconnection upon network failure for testing the
handover support, an important feature needed for wearables due to their short BT range (§6).

For passivemeasurements, we collect bothWiFi and BT traces onmultiple entities (phone/wearable/
server). The BT trace is captured at both the host-controller interface (HCI, using btsnoop log)
and the OS (using tcpdump), and contains both the data packets and the BT control messages. In
addition to the network traces, we collect the network state and signal strength information to
understand their impact on network performance. We also develop a tool that can instrument
different components of the packet transmission/reception pipeline in the OS kernel to identify the
performance bottleneck for the end-to-end data delivery (§4.2).
Compared to prior measurement studies, our measurement and instrumentation techniques

are comprehensive in that they cover multiple entities (wearable, phone, server), protocols (BT,
WiFi), and instrumented layers (HCI, OS, TCP, App). Note this may not be the case for many prior
works. For instance, some previous studies on smartwatches [51, 79] collect BT traces only at HCI,
incurring various limitations such as inaccurate goodput measurement (due to lower-layer padding)
and not being able to separate individual application streams from the multiplexed traffic captured

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 3. Publication date: March 2019.

3:6 X. Zhu et al.

Table 3. Data collected by our measurement toolkit.

Category Data Item Method Source

Watch-side

BT HCI trace Callback btsnoop log
BT and WiFi packet trace tcpdump

BT RSSI Poll (0.2s) Wear OS APIBT and WiFi network state

Phone-side

BT HCI trace

Callback

btsnoop log
TCP/IP packet trace tcpdump

kernel packet transmission events Kernel log
BT packet trace Android log

Server-side packet trace Callback tcpdump

at HCI. Some other methods [29, 41, 73] extract the RTT from only one side, and are therefore
incapable of inferring the end-to-end RTT when a wearable–server connection is split by a phone
when the CPROXY mode is used. Table 3 lists all types of data collected by our toolkit. The runtime
CPU overhead of collecting those types of data is less than 3% on our wearables.
The collected data will be analyzed offline. Given a lack of tools to decode BT messages, we

follow the BT specification [10] to build a tool that can parse the BT traffic to extract both the user
payload and control messages. In addition, this offline tool can perform various types of correlation
analysis on different data sources, including cross-technology (e.g., WiFi vs. BT), cross-device (e.g.,
wearable vs. phone), and cross-layer (e.g., app performance vs. BT radio state) correlation analysis.
Our toolkit is written in about 3,000 LoC using C++, Java, and Python. We have open-sourced the
entire toolkit on GitHub [12].
Leveraging the above measurement infrastructure, we next answer the following important

research questions.
•What is the BT performance on commodity wearables? How is the upper-layer wearable app
performance affected by the lower-layer BT resource management state machine?
• How does the smartphone gateway impact the performance?
• How does the network selection policy affect the tradeoff between performance and energy
consumption?
•What is the performance when a network handover occurs?

3 IMPACT OF BT RADIO STATE MACHINE
To reduce the energy consumption and efficiently utilize the limited radio resources, wireless radios
usually define different radio states to operate on [38]. BT makes no exception. In this section, we
investigate how the BT radio state machine behaves on commodity wearables, and quantify its
impact on wearable networking performance. This is to our knowledge the most comprehensive
and in-depth study of the BT radio state machine on wearables. We discover that the poorly realized
BT state machine on all Wear OS smartwatches we have incurs significant performance degradation
in common usage scenarios (e.g., up to 140% inflation of the data download time over BT).

3.1 BT Radio State Primer
The BT core specification [10] defines four radio states: the Active mode, Sniff mode, Hold mode,
and Park mode. In the Active mode, the device is always listening for packet transmission and
reception, while the latter three are low-power modes where the BT device sleeps during most of
the time, and periodically wakes up to listen to the channel to check if there is any incoming data.
A state transition can be triggered by a BT device itself, or by requests from a peer device. In the

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 3. Publication date: March 2019.

Understanding the Networking Performance of Wear OS 3:7

Sniff
Mode

Active
Mode

Recv req from phone
(nil)

Recv req from phone
(nil)

TX

Send req to phone

Timeout (2 or 5 sec)
Send req to phone

Sniff
Mode

Active
Mode

Recv req from watch
(nil)

Recv req from watch
(nil)

TX or RX

Send req to watch

Timeout (5 sec)
Send req to watch

Wearable-side State Machine Phone-side State Machine

❶

❷

❸

❹

❺

❻

❼

❽

TX
(nil)

TX or RX
(nil)

❾ ❿

Fig. 2. BT state machines on wearable and phone. A state transition is described by its condition (above the
bar) and its incurred action (below the bar). “nil” means no action.

latter case, to request a state transition, a BT host can issue HCI commands to its BT controller,
which will further notify the peer node (see the left side of Figure 1 for the BT protocol stack). The
peer can choose to accept or reject this state change request, and/or to suggest a different set of
parameters. Each side’s BT host will be notified with the state change request or response through
HCI. The radio states and their transitions can incur tradeoffs between the performance and energy
consumption. Note that other types of wireless radios such as WiFi and cellular also have radio
state machines, and they have been well studied in the literature [19, 56]. In contrast, BT state
machines receive much less attention in particular on wearables.

3.2 Inferring the BT Radio State Machines
Despite defining different radio states, the standard does not specify the actual state transitions,
which are up to vendors’ implementation choices. Also, a unique aspect of the BT state machine
that was not considered by the prior study [79] is that a device’s radio state is jointly determined
by itself and its paired device as described in §3.1. We thus perform a study to comprehensively
infer the BT radio state machine for off-the-shelf wearables and phones, as well as to study their
interplay. Our high-level approach is to conduct controlled experiments using strategically crafted
traffic (by controlling the direction, size, and timing of the traffic) to exercise different states and
the transitions among them. Also, instead of indirectly tracking the state transitions (e.g., using
power measurement [79]), we use our tool (§2) to capture and analyze the BT control messages at
the HCI layer to explicitly and precisely monitor the state transitions without requiring a power
monitor. We next detail our approach for inferring the BT state machines on both the wearable and
the phone as shown in Figure 2.
• State Simplification. To begin with, through extensively testing against various workloads, we
identify that among the four radio states defined by the specification, none of our 8 smartwatches
or 8 smartphones listed in Table 2 uses the Hold mode or the Park mode. We thus only need to
consider the transitions between two modes (states): the Active and the Sniff mode.
• Phone-side State Transitions. We now describe how a device determines state transitions
based on its local state and its observation of the network traffic. We first examine the phone
side. Through controlled experiments, we confirm that a Sniff→Active transition is triggered by
any data to be transmitted or received (❸ in Figure 2). Recall that at the Sniff mode, the device
typically sleeps, and only periodically wakes up to check incoming data. Therefore, efficient data
transmission and reception have to be performed on the Active mode. We also confirm that an
Active→Sniff transition (❹) is triggered by an inactivity timer, whose value is 5 seconds based on
our measurements. The timer is reset whenever any data is sent or received at the Active mode (❿).
•Wearable-side State Transitions.We apply the same method to infer the wearable-side state
transitions, which (❶, ❷, and ❾) are found to be the same as those at the phone side except two
differences. First, very surprisingly, by testing the state machine’s behaviors using uplink, downlink,

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 3. Publication date: March 2019.

3:8 X. Zhu et al.

HCI_CMD:
Sniff Mode

HostHost ControllerController

HCI_EVT:
MODE Change

HCI_CMD:
Exit Sniff Mode

HCI_EVT:
MODE Change

HCI_Event:
MODE Change

Sniff mode

LMP_SNIFF_REQ

LMP_ACCEPTED

LMP_ACCEPTED

LMP_UNSNIFF_REQ

HCI_Event:
MODE Change

Baseband ack

Sniff mode

Active mode

Baseband ack

Active mode

Active modeActive mode

Fig. 3. BT control message exchanges for triggering and exiting Sniff Mode.

and bidirectional traffic, we discover that for all 8 watches, a Sniff→Active transition is only triggered
by transmissions but not by receptions (❶); also the Active mode timer is only reset by transmissions
but not by receptions (❾). As a result, if a wearable keeps receiving data but not transmitting any
data, it will enter the Sniff mode when the timer expires. We call this Undesired Sniff mode problem.
We will revisit it shortly and demonstrate its severe performance impact in §3.3. Second, we observe
two timers, 2s and 5s, that might be used by the wearable’s Active→Sniff transition (❷). As to be
shown soon, the 2s timer worsens the undesired Sniff mode issue compared to the 5s timer.
• Interplay between Phone and Wearable.We next describe how the phone-side state transi-
tions affect the wearable-side ones, and vice-versa. Recall from §3.1 that the BT state machine has a
unique mechanism: when its own state is about to change, a device A will send a request message
to its paired device B to request B’s state to also be changed, in order to explicitly synchronize both
sides. The dotted arrows in Figure 2 illustrate such message deliveries. Per the BT specification, B
can either accept or decline this request; but our measurements indicate that in practice, the paired
device (either the wearable or the phone) will always accept the request, as shown in ❺, ❻, ❼, and
❽ in Figure 2.

Figure 3 illustrates the above process and how it interplays with the aforementioned undesired
Sniff mode problem on wearables. Let us assume that an on-going download is in progress so
both devices are in the Active mode. We describe four sequentially occurred events. (1) Due to
the undesired Sniff mode problem, the received data does not reset the Active mode timer on the
wearable side, so the wearable will eventually enter the Sniff mode (❷), and send a request to the
phone (LMP_SNIFF_REQ in Figure 3) to let the phone enter the Sniff mode as well. (2) As mentioned
above, the phone unconditionally accepts this request and enters the Sniff mode (❽). (3) However,
since the phone is still transmitting data, a Sniff→Active transition will be immediately triggered
on the phone side (❸, recall that the phone does not have the undesired Sniff mode problem), which
also sends a request to the wearable to change its state. (4) Through this way, the wearable exits
the Sniff mode (❺) and resumes the data reception. However, this process will repeat after a while,
based on the wearable’s Active mode timer.
Figure 4 illustrates such repetitions during a long-lived data download session (monitored on

the wearable side). The green triangles are phone-originated requests received by the wearable (i.e.,
the trigger of ❺). The red squares represent the Sniff mode requests sent by the wearable (i.e., the
action of ❷). As shown, when there is no uplink traffic, between a triangle and the next square,
there is a constant interval of 5 seconds corresponding to the wearable’s Active mode timer. Such

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 3. Publication date: March 2019.

Understanding the Networking Performance of Wear OS 3:9

 0 5 10 15 20 25 30 35 40

5s

5s

Time (s)

Mode change to active
Sniff mode request

Uplink packet

Fig. 4. Repetitive transitions between Sniff and Active modes observed on LG Urbane (normal RSSI).

 0
 1
 2
 3
 4

 0 10 20 30 40 50 60
Sniff Mode
Active Mode

Th
ro

ug
hp

ut

(M
bp

s)

Time (s)

Throughput
Radio state

Fig. 5. Correlation between the BT throughput and radio state for download, demonstrating the undesired
Sniff mode problem (LG Urbane Watch, normal RSSI).

an interval can be prolonged by uplink packets that reset the wearable’s Active mode timer, as
indicated by the blue dots in Figure 4.

3.3 Impact of the Undesired Sniff Mode
We believe that it is worthwhile reporting the undesired Sniff mode problem due to two reasons.
First, this problem is prevalent as it has been observed on all of our 8 wearables of heterogeneous
vendors and Wear OS versions. Second, the Wear OS is a tailored version of Android yet their state
machines behave differently. This may reflect several incorrect assumptions possibly made by BT
driver developers for wearables:
× The Sniff mode always helps reduce energy consumption without incurring much performance
degradation. So it should be aggressively used.
× The duration of the undesired Sniff mode is short as it can be quickly recovered by the state
change requests from the phone.
×Wearables only receive little data, or the wearable traffic is always a mixture of downlink and
uplink, so the undesired Sniff mode is unlikely to occur.
We next experimentally demonstrate the severe performance impact brought by the undesired

Sniff mode by examining two performance metrics: throughput and one-way delay (OWD) during
a long-lived data download session. The throughput is calculated every 200ms on the receiver
(wearable) side. The OWD from the server to the wearable is an important performance metric
for real-time applications. It is continuously measured as the difference between the transmission
and the reception time of each byte. Before each experiment, we connect the wearable through a
USB cable to the server, and use a custom program we developed to synchronize their clocks. The
results below are obtained on an LG Urbane smartwatch running the Wear OS 2.15 paired with a
Nexus 5X running Android 7.1.1. Other wearables and phones show qualitatively similar results.
In Figure 5, we show the performance of the bulk data download, which represents important

use cases such as downloading apps, software update, or media files to a wearable. As shown,
the wearable’s radio state oscillates between the Active and the Sniff mode during a continuous
download. As a result, for every ∼5 seconds (the wearable’s Active mode timer), the BT throughput

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 3. Publication date: March 2019.

3:10 X. Zhu et al.

 0
 20
 40
 60
 80

 100

 0 0.3 0.6 0.9 1.2 1.5 1.8

C
D

F
(%

)

Throughput (Mbps)

-50dBm
-60dBm
-70dBm
-80dBm

(a) Bulk download under different phone-
watch positions.

 0
 20
 40
 60
 80

 100

 0 0.3 0.6 0.9 1.2 1.5 1.8

C
D

F
(%

)

Throughput (Mbps)

100kbps
500kbps
900kbps

(b) Different data rates of CBR traffic, -50
dBm BT RSSI.

Fig. 6. BT downlink throughput of bulk data transfer and CBR on LG Urbane Watch.

 0
 20
 40
 60
 80

 100

 0 0.5 1 1.5 2

C
D

F
(%

)

Latency (s)

-50dBm
-60dBm 0

 20
 40
 60
 80

 100

 0 0.5 1 1.5 2

C
D

F
(%

)

Latency (s)

-70dBm
-80dBm

 99

 100

 0 2 4 6
 99

 100

 0 2 4 6

(a) 500kbps CBR under different phone-
watch positions.

 0
 20
 40
 60
 80

 100

 0 1 2

C
D

F
(%

)

Latency (s)

100kbps
500kbps 0

 20
 40
 60
 80

 100

 0 1 2

C
D

F
(%

)

Latency (s)

900kbps

 95

 100

 0 2 4
 95

 100

 0 2 4

(b) Different data rates of CBR traffic, -50
dBm BT RSSI.

Fig. 7. End-to-end OWD for CBR traffic on LG Urbane.

drops to almost 0 for about 0.5 to 1.2 seconds. A similar observation is made for CBR streaming,
which represents real-time traffic such as VoIP and live radio streaming (figure not shown).

To further quantify the impact of the undesired Sniff mode in diverse environments, we repeat
the above bulk data download experiment by varying the location of the smartphone: (1) on a desk
where the user sits in front (-50 dBm); (2) in the user’s pocket (-60 dBm); (3) in the user’s bag (-70
dBm); (4) meters away from the watch (-80 dBm). Note that the smartwatch is always worn on the
user’s wrist. As shown in Figure 6a, in all the settings, we observe throughput drop and at least
10% of the no-reception time. We also use three different data rates for CBR traffic (-50 dBm BT
RSSI) and observe severe throughput degradation for all three rates, as shown in Figure 6b.

We next measure the impact of the undesired Sniff problem on the OWD for CBR traffic. Similar
to Figure 6a, Figure 7a measures the OWD for CBR traffic at 500 kbps under four settings with
different BT RSSI readings. The long tails indicate that about 30% of the OWD samples are affected.
The OWD can inflate to up to 5 seconds. A similar observation is made in Figure 7b, which measures
the OWD distributions for downlink CBR traffic at three data rates with -50 dBm BT RSSI.

Mitigation Solutions. The ultimate fix of the undesired Sniff mode problem requires modifying
the wearable-side state machine residing in the lower protocol stack. Nevertheless, the results in
Figure 4 suggest a simple temporary fix: generating light uplink traffic during a download session.
We implement this solution by developing a lightweight background app running on a wearable.
It tracks the wearable’s BT radio state based on the observed traffic, and sends a small uplink
packet when the wearable’s Active→Sniff timer is about to expire. We find that this simple solution
completely eliminates the undesired Sniff mode and therefore its incurred performance degradation.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 3. Publication date: March 2019.

Understanding the Networking Performance of Wear OS 3:11

 0

 100

 200

PaperCraft YouTube
 0
 5
 10
 15
 20

D
ow

nl
oa

d
tim

e
(s

)

V
id

eo
 b

uf
fe

rin
g

tim
e

(s
)

5s 2s NS

 0

 20

 40

PaperCraft YouTube

E
ne

rg
y

(J
)

5s 2s NS

Fig. 8. QoE (left) and energy consumption (right) for game download and YouTube streaming on LG Urbane.

Real App Performance.We also conduct tests on real apps. We confirm that the undesired Sniff
mode problem does occur on commercial wearable apps and indeed affects the user experience. We
run two apps under good BT network condition (-50 dBm RSSI): downloading the PaperCraft game
app of 16 MB from the Google Play store and watching a YouTube video1. The left plot in Figure 8
shows the app QoE for the two workloads: the overall download time for the app download (the left
Y axis) and the initial video buffering time (the right Y axis). We show three bars for each app. “5s”
and “2s” correspond to having a wearable-side Active→Sniff timer of 5s and 2s, respectively. “NS”
refers to the scenario where the undesired Sniff mode problem is fixed using the above solution of
dynamically injecting light uplink packets. The right plot in Figure 8 shows the energy consumption
in each case. We calculate the energy consumption using a full-fledged smartwatch energy model
developed recently [51]. Each experiment is repeated 10 times. We make two observations. First,
the undesired Sniff mode brings significant QoE degradation to both apps. Compared to the 5s
Active→Sniff timer, fixing the undesired Sniff mode issue reduces the app download time and the
initial video buffering delay by 27% and 37%, respectively. Compared to the 2s timer, the gains
are even higher – 58% and 65% respectively. Second, entering the Sniff mode more frequently is
supposed to bring energy savings. However, for app download, it actually increases the overall
energy consumption by 25% and 113%, when the timer is 5s and 2s, respectively, because the overall
download time is lengthened. For YouTube video streamed at a lower bitrate (compared to the file
download), eliminating the undesired Sniff mode only slightly increases the energy consumption
(by 4% when the timer is 5s).

4 IMPACT OF SMARTPHONE PROXYING
As mentioned earlier, a paired smartphone gateway plays a critical role in wearable networking. In
this section, we study the performance impact of the CPROXY . Recall that typically residing on a
paired phone, the CPROXY splits an end-to-end client-server connection into a server-phone TCP
connection and a phone-wearable BT RFCOMM connection, while being transparent to both the
wearable-side and server-side apps. Because of the two heterogeneous links, the CPROXY needs
multiple buffers at various layers, such as the receive buffer in the TCP/IP stack, the app-layer
buffer, and the transmission buffers in the BT RFCOMM stack. These buffers, along with other
existing in-network and on-device buffers, can potentially cause “bufferbloat” that inflates the
end-to-end delay. This is particularly undesired for real-time traffic with low latency requirements.

4.1 Substantial Bufferbloat in CPROXY
We begin with characterizing the overall end-to-end latency under the CPROXY mode. Specifically,
we measure the one-way delay (OWD) from the server to the wearable, an important performance
metric for real-time applications. To emulate the real-time traffic, we use the CBR traffic with three
rates as the workload: 1.5Mbps, 1Mbps, and 500kbps. For comparison, we also measure the OWD
of bulk data download without a rate limit.
1Video streaming on smartwatches has its use cases such as watching a tutorial when performing cooking or house
maintenance. The playback can be controlled by voice.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 3. Publication date: March 2019.

3:12 X. Zhu et al.

 0
 8

 16
 24
 32
 40

 0 40 80 120 160

La
te

nc
y

(s
)

Time (s)

Bulk download
CBR/1.5Mbps

CBR/1Mbps
CBR/500kbps

(a) E2E delay over time.

 0
 4
 8

 12
 16
 20
 24
 28
 32

Bulk D
L

1.5Mbps
1Mbps

500kb
ps

La
te

nc
y

(s
)

(b) E2E delay distribution.

Fig. 9. E2E delay of bulk transfer and CBR traffic (LG Urbane paired with Nexus 5X, normal RSSI).

For each sending rate, the server sends data to the wearable for at least 160s. The OWD is
measured using the method introduced in §3.3.

Figure 9 shows the OWD of CBR traffic and the bulk download from the server to an LG Urbane
Watch paired with a Nexus 5X over one representative measurement. For CBR traffic whose data
rate is much lower than the BT bandwidth, we still observe fluctuating OWD over time, with the
standard deviation being 324ms (99ms) for 1Mbps (500kbps). When the CBR rate becomes higher,
e.g., at 1.5Mbps, the OWD inflates to an unacceptably high level, with the median delay being
20.1s (up to 28.6s). For bulk download, its median OWD further increases to 29.0s. We also observe
high delays on other combinations of watches and phones we have. Recall from §1 that many
wearable apps incur high-bitrate real-time traffic, such as real-time camera streaming, HD VoIP,
and real-time screen projection [2]. The high OWD will incur unacceptable QoE for such apps.

4.2 Identifying the Root Cause
We now seek to understand the root cause of the high OWD under the CPROXY mode. The multiple
buffers scattered in the end-to-end data transmission pipeline present a challenge towards our
analysis. We thus dissect the end-to-end (E2E) delay by instrumenting at multiple entities and layers.
Specifically, we use our toolkit (Table 3, §2) to collect BT and TCP/IP traces at several locations,
and then perform offline analysis to obtain for each byte various timestamps as illustrated in
Figure 10. (1) tS : from the tcpdump trace captured on the server when the data is being transmitted
out; (2) tI R from the tcpdump trace captured on the smartphone when the data is received in
the smartphone OS kernel; (3) tA: from the kernel log captured on the smartphone when the
data is copied to the proxy app’s userspace (by instrumenting tcp_input.c); (4) tBS : from the
Android log captured on the smartphone when the proxy app sends the data to the BT stack (by
instrumenting BluetoothSocket.java); (5) tBR : from the tcpdump trace on the wearable when the
data is delivered to wearable OS. The end-to-end latency can thus be broken down into four parts:
the transmission delay from server to phone (d1 = tI R − tS), the buffering time in the TCP/IP stack
on the phone (d2 = tA − tI R), the buffering time in the proxy app buffer on the phone (d3 = tBS − tA),
and the delay of BT transfer from the phone to the wearable (d4 = tBR − tBS). Note that d2 is
dominated by the delay incurred by the TCP receive buffer on the smartphone. The IP queueing
delay at the qdisc is confirmed to be very small. Also, we separate d2 and d3, both residing on the
smartphone, due to the difference between their associated buffers: the TCP buffer incurring d2 is
maintained at a per-connection basis, whereas the proxy app buffer incurring d3 is shared by all
wearable app streams, and is therefore more likely to cause potential cross-traffic interference.

Measurement Results. Figure 10b shows the OWD breakdown for CBR traffic at 1.5Mbps for
an LG Urbane watch paired with a Nexus 5X, over a representative experiment. We observe that
the buffering delay in the TCP/IP stack (d2) accounts for almost the entire OWD. Recall that d2 is

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 3. Publication date: March 2019.

Understanding the Networking Performance of Wear OS 3:13

d3

tS

tIR

tA

tBS

tBR

d1

d4

Smartphone

App Server

Smartwatch

Ethernet intf Tx

WiFi intf Rx

d2

Data
transmission

flow
TCP/IP

recv

Proxy
app

BT stack Tx

BT stack Rx

(a) E2E delay breakdown
methodology.

 0

 5

 10

 15

 20

 25

 30

 0 40 80 120 160

La
te

nc
y

(s
)

Time (s)

d1
d2
d3
d4

(b) Breakdown of E2E delay for
CBR traffic at 1.5Mbps.

Fig. 10. E2E delay breakdown of CBR traffic in CPROXY mode (LG Urbane with Nexus 5X, normal BT RSSI).

Table 4. Impact of TCP receive buffer size on the severity of CPROXY bufferbloat on different phones.

Nexus 5X SGS5 Nexus 5
tcp_rmem_max 8,291,456 4,525,824 2,097,152

rmem_max 8,388,608 2,097,152 2,097,152
d2: TCP/IP recv (s) 26.1 ∼ 28.6 4.0 ∼ 5.5 4.1 ∼ 5.7
Total E2E OWD (s) 27.9 ∼ 30.1 5.7 ∼ 6.7 5.9 ∼ 7.0

dominated by the delay incurred by the TCP receive buffer (recvBuf). We thus explicitly confirm
how the recvBuf size affects the OWD on three smartphones in Table 4. The effective recvBuf size is
determined by the minimum value of two configurable OS parameters rmem_max and tcp_rmem_max
(both are in bytes). As shown, a phone with a smaller recvBuf indeed experiences a smaller d2 as
well as a lower overall E2E OWD. However, setting the recvBuf to be too small will throttle the
TCP congestion window and hence the throughput – a tradeoff that is difficult to balance.

While the bufferbloat problem has been well studied in different contexts such as broadband
wired network [74], cellular download [41], and cellular upload [29], we highlight two differences
that make bufferbloat in the CPROXY mode a unique problem. First, due to the highly asymmetric
bandwidth of the BT/BLE link and the WiFi/cellular link, the CPROXY -side bufferbloat will always
occur when theWiFi/cellular link throughput becomes higher than∼1.1Mbps. The above breakdown
analysis indicates that the TCP recvBuf configuration does not take into account such bandwidth
asymmetry. Second, the lower-layer BT state machine also affects the severity of the bufferbloat. In
particular, the undesired Sniff Mode identified in §3.2 slows down the BT data transmission and
thus causes the proxy-side buffer to further build up. This is confirmed in Figure 10b where d4
exhibits periodical spikes, whose occurrences well match those of entering the sniff mode.

4.3 Mitigating the CPROXY Bufferbloat
We now consider how to mitigate the CPROXY bufferbloat. In the literature, numerous bufferbloat
mitigation solutions have been proposed, but we found it is difficult to directly apply them in
our context due to various practical or fundamental issues. For example, blindly reducing the
TCP recvBuf may throttle the congestion window and thus the throughput [29]; delay-based TCP

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 3. Publication date: March 2019.

3:14 X. Zhu et al.

 0

 10

 20

 30

Download OWD Download thrput Telegram delay
 0

 1

 2

 3

D
el

ay
 (s

)

Th
ro

ug
hp

ut

(M
bp

s)

Default
Bufferbloat Mitigation

Fig. 11. CPROXY bufferbloat mitigation for bulk download and messaging with competing traffic (LG Urbane,
Nexus 5X).

congestion control [16, 50] is not aware of the BT protocol stack between the phone and the
wearable; various Active Queue Management (AQM) techniques [55, 63] only regulate the qdisc
buffering, and may need substantial modifications for tackling the CPROXY -side bufferbloat.

Developing a full-fledged bufferbloat mitigation solution for wearable networking with hetero-
geneous links is beyond the scope of this paper. Here, we propose a simple, practical, yet effective
solution to demonstrate the need for coordinating the heterogeneous links as well as the substantial
performance improvement. Note that other (better) solutions may exist.

In our scheme, the phone maintains a virtual queue (shared by all apps) whose size increases as
bytes arrive from the remote server and decreases upon the reception of BT ACKs. Based on the
virtual queue size, our scheme dynamically throttles the connection between the phone and the
server (if needed) to bound the actual buffering delay. Specifically, we maintain two thresholds, an
upper bound QU B and a lower bound QLB . The throttling is enabled when the buffer level exceeds
QU B , and is disabled when the buffer level drops belowQLB .QU B is set to BW × (1− ε)T where BW
is the current estimation of the BT link bandwidth, T is the upper bound of the tolerable queueing
delay (configurable based on the app’s QoE requirement), and ε controls the aggressiveness of
our scheme. QLB is set to BW × (1 − 2ε)T so that both thresholds are proportional to the BT link
bandwidth. We empirically use T=1s, ε=0.3, and set the throttling rate to BW

2 . Note that BW may
vary over time.

Evaluation.We implement the above scheme using our toolkit (§2) for performance monitoring
and Linux tc for bandwidth throttling. We then conduct controlled experiments to evaluate its
effectiveness. We consider two workloads: TCP bulk download and receiving short messages
delivered by the Telegram messaging app [3] when there is an on-going concurrent transfer. The
latter scenario may happen when, for example, a user receives a message when a media player
is performing audio or video streaming in the background. We repeat both experiments 10 times
under a normal network condition (-60 dBm BT RSSI) on an LG Urbane smartwatch paired with a
Nexus 5X phone. Figure 11 measures the OWD and throughput for the bulk download, as well as
the per-message delivery time for Telegram messaging. As shown, for bulk download, our scheme
substantially reduces the packet OWD by 78 times with less than 3% of throughput reduction. Our
scheme also reduces the Telegram message delivery delay by 76%.

5 PERFORMANCE & ENERGY IMPACT OF NETWORK SELECTION
Today’s wearables are usually equipped with multiple network interfaces. For example, most
smartwatches have WiFi and BT/BLE, and advanced editions even have the cellular interface [44].
Typically, the Wear OS employs a static interface selection policy: all 7 smartwatches except Huawei
Watch 2 use BT (through the CPROXY) when both BT and WiFi networks are available. At first
glance, this simple policy is energy-wise beneficial as BT is known to be more power-efficient
than WiFi. Interestingly, Huawei Watch 2, which uses a custom Wear OS, actually prefers WiFi

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 3. Publication date: March 2019.

Understanding the Networking Performance of Wear OS 3:15

 0
 5

 10
 15
 20
 25
 30

 0 60 120 180

Bett
er

E
ne

rg
y

co
ns

um
pt

io
n

(J
)

(a) App download time(s)
 in Play Store

Static: use BT

 20
 25
 30
 35
 40
 45
 50

 200 400 600

Bett
er

E
ne

rg
y

co
ns

um
pt

io
n

(J
)

(b) Youtube VOD
throughput(kbps)

Static: use WiFi (Good)

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

 300 600 900

Bett
er

E
ne

rg
y

co
ns

um
pt

io
n

(J
)

(c) Message delivery
delay(ms) in Telegram

Static: use WiFi (Fair)
 30

 60

 90

 120

 100 200 300

Bett
er

E
ne

rg
y

co
ns

um
pt

io
n

(J
)

(d) Throughput(kbps)
of TinyCam Pro

Adaptive: based on real-time
 throughput dynamics

Fig. 12. QoE-energy tradeoffs across four real workloads using different interface selection policies (LG
Urbane Watch, normal BT RSSI, Good/Fair WiFi network condition).

over BT, leading to potentially high energy consumption. In this section, we quantitatively analyze
how the network selection policy affects the important tradeoff between performance and energy
consumption, using real-world workload on COTS smartwatches.

5.1 Impact of Single-path Interface Selection
We first study the single-path interface selection, i.e., using only one interface at any given time.
We consider four real-world workloads: (a) downloading a wearable app of 16MB from the Google
Play Store, (b) streaming a 2-min YouTube video to a watch, (c) delivering a short message by
Telegram, and (d) streaming from an IP-camera in real time for 150s using the TinyCam app [5].
For these diverse workloads, we employ the app download time, the video throughput, the message
delivery delay, and the real-time data streaming rate as the QoE metrics, respectively. Similar to
that in Figure 8, we calculate the energy consumption using the energy model developed by [51].
Regarding the network selection policy, we consider the following four options: (1) always using
BT, assuming a good network condition (-50 dBm RSSI), (2) always using WiFi, assuming a good
network condition (10Mbps BW, 10ms RTT), (3) always using WiFi, assuming a fair network
condition (5Mbps BW, 20ms RTT), and (4) an approach that dynamically switches between BT and
WiFi as to be detailed in §5.2.

For each combination of the workload and network selection policy, we repeat the experiment 10
times. We show the results in Figure 12 to illustrate the tradeoff between QoE and energy consump-
tion. Each plot in Figure 12 corresponds to a workload; each plot has four clusters corresponding
to the four interface selection policies described above. Ideally, we prefer a cluster to be located in
the bottom-left corner with a good QoE (the X Axis) while incurring a low energy overhead (the Y
Axis). Our key observation from Figure 12 is that, depending on the app workload, the preferred
interface selection policy differs. For (a) and (b), given their large data sizes, WiFi offers both lower
energy consumption and a better QoE due to its higher throughput and higher energy efficiency
(i.e., joule per byte) compared to BT. In contrast, for (c), WiFi only marginally reduces the message
delivery latency while incurring considerably higher energy consumption compared to BT. This is
because the small message size and WiFi’s high base power consumption lead to a higher joule
per byte compared to BT. For (d), the workload consists of CBR traffic that BT can already sustain.
This makes BT more energy-efficient than WiFi, which has a higher base power consumption and
bandwidth under-utilization.

The energy results in Figure 12 only consider the energy consumed on the wearable. In addition,
using BT incurs additional energy footprint on the paired smartphone that acts as a proxy forwarding
traffic between the wearable and the server. The smartphone needs to utilize both its WiFi interface
(with the server) and BT interface (with the wearable). To quantify such an energy overhead, we
focus on the “static: use BT” scenario in Figure 12, and apply the smartphone WiFi [19] and BT [27]
power models to calculate the overall smartphone-side radio energy consumption to be 121.984 J,

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 3. Publication date: March 2019.

3:16 X. Zhu et al.

125.76 J, 0.524 J, and 157.2 J, respectively, for the four workloads. This non-trivial energy overhead
on the smartphone makes it more complex to make interface selection decisions for the wearable.
The above results indicate that the static interface selection policy, which strictly prefers one

interface over another as employed by almost all of today’s smartwatches, does not always provide
a preferred tradeoff between performance and energy consumption. The results suggest the need for
a more adaptive interface selection policy. In §5.2, we will describe such an example corresponding
to the “Adaptive” cluster in Figure 12.

5.2 Multipath Performance on Wearables
Multipath transport, which simultaneously uses multiple network interfaces, is becoming popular
on smartphones, as fueled by standardized solutions such as MPTCP [1]. Despite a lack of prior
work, we do believe that multipath transport can also benefit wearable networks in two aspects: (1)
enhancing the throughput by aggregating bandwidth, and (2) facilitating seamless handover or fast
interface switch. We examine the first aspect now and address the second one later.
We consider a common usage scenario involving a WiFi path and a BT path. In the wearable

context, we do not expect multipath to be always used due to energy constraints. Instead, a wearable
can adaptively enable multipath (e.g., enhancing BT using WiFi) to meet user-specified deadlines or
to prevent stalls for multimedia streaming [34]. Note that maintaining active WiFi connectivity
incurs negligible power consumption due to WiFi’s deep power-saving mode [13, 45, 66].

AMultipath Framework for Wearables. The Wear OS by default does not support multipath
transport. Also, it is difficult to directly use MPTCP because BT does not speak TCP/IP by default.
We thus make a methodological contribution of adding the multipath transport feature (over WiFi
and BT) to the Wear OS. Specifically, we first leverage ConnectivityManager in the Wear OS to
keep WiFi active when BT is also on. We then use the Linux socket API and Bluetooth API to
build a custom multipath framework. In our framework, each path is a standalone TCP connection.
The WiFi path is established directly between the wearable and the server2, and the other path is
wearable–CPROXY–server where the wearable–CPROXY segment is over BT. On the sender side,
the original data stream is split into data chunks that are distributed onto the paths. We add to each
chunk a custom header containing the metadata such as the size and global sequence number of the
chunk. The receiver side then uses the metadata to reassemble the received chunks into the original
data stream. To provide application transparency, we use netfilter [4] to transparently intercept
application TCP connections on the wearable side. We also implement three off-the-shelf scheduler
algorithms that determine how to distribute the traffic onto the paths: MPTCP’s default minRTT
scheduler [62], a round-robin scheduler, and a redundant scheduler. The first two schedulers help
improve the throughput by aggregating the bandwidth of all paths; the third scheduler helps reduce
the latency by sending duplicate data to all paths. Our system consists of around 10K lines of Java
and C/C++ code. It is also open-sourced on GitHub [11].

Energy Overhead. We measure our multipath framework’s energy overhead using a Monsoon
power monitor [8]. Compared to the base power level of an LG Urbane Watch with the screen being
turned off, our framework incurs only 0.6% of additional device-level power consumption. Some
use cases such as fast interface switch further require our framework to keep the WiFi interface
turned on and maintain a long-lived TCP subflow. We find that doing so incurs a device-level
energy overhead of 6.2% based on an 8-hour measurement, using a 4-minute keep-alive timer as
suggested by the RFC [15].

2In our experiments, to make our multipath framework fully transparent to the original server, we actually run the server-side
code of our framework on an in-cloud proxy. The proxy–server path is verified not to be the performance bottleneck.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 3. Publication date: March 2019.

Understanding the Networking Performance of Wear OS 3:17

 0
 400
 800

 1200

 0 15 30 45 60Th
ro

ug
hp

ut
(k

bp
s)

Time(s)

BT
2.4GHz WiFi

 0
 400
 800

 1200

 0 15 30 45 60Th
ro

ug
hp

ut
(k

bp
s)

Time(s)

5GHz WiFi

Fig. 13. BT-WiFi multipath under 2.4/5 GHz WiFi (Nexus 5, normal BT/WiFi RSSI).

Performance Aggregation Results onWearables. Leveraging our wearable multipath frame-
work, we conduct experiments on an LG Urbane paired with a Nexus 5X to assess the multipath
performance over WiFi and BT. Other watch and phone pairs yield qualitatively similar perfor-
mance. We focus on two types of improvements brought by multipath: the latency reduction when
the redundant scheduler is used, and the bandwidth aggregation when the minRTT scheduler is
used. For the latency reduction, we observe positive results. For example, using the redundant
scheduler helps reduce the average RTT by 29% for CBR traffic at 500kbps (WiFi: 10Mbps BW, 10ms
RTT; BT: -50 dBm RSSI). However, we find that the bandwidth aggregation results are much worse
than our expectation. Ideally, for long-lived data transfers, the aggregated throughput achieved
by multipath should be the sum of all paths’ data rate. In reality, we observe that the bandwidth
gain from multipath is far less than that. For example, when we throttle the WiFi and BT path’s
bandwidth to both 1Mbps, the multipath bandwidth gain compared to a single path is only 7%.

We realize the reason for the above unexpected results are multifold and cross-layer. For example,
at the transport layer, we need a better scheduler that takes into account the heterogeneity between
WiFi and BT. Very importantly, we also discover another key reason rooted deeply at the PHY layer:
all our smartwatches support only 2.4 GHz WiFi that operates at the same frequency band of BT.
The WiFi and BT thus cause interference when simultaneously transmitting data. This is confirmed
by the following experiment: a Nexus 5 smartphone performs bulk data transfers over BT and WiFi
at the same time (the phone supports both 2.4 GHz and 5 GHz WiFi), with the WiFi throughput
being capped at 1Mbps. The left (right) plot in Figure 13 shows the BT and 2.4 GHz (5 GHz) WiFi
throughput measured on the phone. As shown, compared to 5 GHz WiFi, when 2.4 GHz WiFi is
used, the BT and WiFi throughput drops by 47% and 7%, respectively. Overall, our findings suggest
the need for introducing 5 GHz WiFi on COTS wearables for reducing the WiFi-BT interference, in
order to facilitate multipath transport over BT and WiFi.

Fast Interface Switch onWearables. Recall from the beginning of this subsection that another
important use case of multipath transport is to support fast interface switch, which seamlessly
and transparently migrates a TCP connection from one path to another path without requiring
re-establishing the connection. We utilize this feature to develop an adaptive interface selection
policy corresponding to the “adaptive” cluster in Figure 12. Specifically, assuming an on-going
download (the upload case is similar), our scheme uses BT over the CPROXY mode by default.
Meanwhile, it monitors the number of bytes buffered at the CPROXY by tracking the incoming
and outgoing bytes’ to/from the CPROXY . When the buffer occupancy level exceeds B bytes for T1
seconds (we empirically choose B=10KB and T1=500ms), we switch to WiFi as BT does not drain
the buffer fast enough. The switch from WiFi back to BT is triggered by a low WiFi throughput (we
use ≤500kbps) for T2 seconds (we use T2=5 seconds).

We implement this adaptive interface selection strategy using our developed wearable multipath
framework. The experimental results in Figure 12 suggest that it outperforms the static policies
over all four workloads. In addition, we will apply multipath to improve the BT-WiFi handover
performance in §6.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 3. Publication date: March 2019.

3:18 X. Zhu et al.

6 BT-WIFI HANDOVER PERFORMANCE
In previous sections, we consider the scenario where both the wearable and its paired phone are
stationary. In reality, either device can be mobile. Consider a typical mobility scenario where a
user wearing a smartwatch walks away from her paired smartphone placed on a table. As the user
walks away, the wearable will lose its BT connectivity. In this case, ideally the wearable needs a
seamless handover from BT to WiFi, an important feature that is missing on today’s wearables as
we will reveal in this section.

6.1 Wearable Handovers are Common
Although the theoretical BT range can be up to 100m [10], in real-world scenarios the range is
much shorter due to attenuations incurred by obstructions or vendors’ intentional reduction of the
radio power for saving energy. For example, on the Samsung Galaxy Gear, the effective BT range
is less than 2 meters based on our measurement. Due to such a short range, network handovers
are likely to occur very frequently when a wearable moves away from the paired smartphone.
To understand how often handovers occur “in the wild”, we conduct an IRB-approved user study
involving 10 voluntary users each wearing an LG Urbane Watch. The 10 participants consist of 4
students, 3 faculty members, and 3 staff members in a large U.S. university. 5 of them are female.
We develop a data collector that infers handover events by monitoring the network interfaces’
states (the method will be described in §6.2). The user study lasted for two months in 2017. During
the daytime (9 AM – 9 PM) across all users, the median handover frequency is once every 1.6 hours.
For some users, handovers can happen as frequently as every 7 minutes. The results suggest the
need for properly handling handovers to provide smooth network switches.

6.2 Poor Wearable Handover Performance
Motivated by the user study, we quantify the handover performance on state-of-the-art wearables
through controlled experiments.

Monitoring the Network State. A prerequisite for measuring handovers is to monitor the
network state change. We capture the state of each network interface from the Wear OS’s Connec-
tivityManager in the background. The state information includes whether the network interface
is up, i.e., available or not, and whether the interface provides actual network connectivity, i.e.,
connected or not. For example, when a smartwatch is associating with the WiFi AP, its WiFi is
available but not yet connected.

Experimental Setup. Our experiment focuses on understanding handovers from BT to WiFi
(handovers from WiFi back to BT can be studied using similar methods). We keep both BT and
WiFi enabled on the wearable (so both interfaces are available) and let the Wear OS use the default
network management policy. We use two wearable apps to generate the traffic workload. The first
is a simple app developed by us (conveniently called RTApp). It represents a typical wearable app
developer’s best-effort user-space implementation of the handover logic, which requires the synergy
between both the app and the OS. Our app emulates the same traffic pattern as the tinyCam app (to
be detailed soon), i.e., downloading a data chunk of 3KB every 160ms from our server, generating
150kbps downlink traffic over TCP. When a handover occurs, the old interface (BT) will lose its
connectivity and shortly after that, the connectivity will appear on the new interface (WiFi). At this
time (detected through polling), our RTApp will establish a TCP connection over the new interface
and resume the data transfer.
The second app we test for handover is the tinyCam security camera app [5]. It is a popular,

professionally designed commercial app that requires continuous network connectivity to stream
real-time video captured from an IP camera to a wearable. We perform a black-box test for this app

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 3. Publication date: March 2019.

Understanding the Networking Performance of Wear OS 3:19

 0
 0.5

 1
 1.5

 2
 2.5

 3

 0
 50
 100
 150
 200
 250
 300

P1 P2 P3 P4

BT-to-WiFi handover

Y
1:

 D
el

ay
 (s

)

Y
2:

 T
hr

ou
gh

pu
t (

kb
ps

)

Frame OWD (Y1)
Bluetooth throughput (Y2)

WiFi throughput (Y2)

No network

Bluetooth conn’ed

WiFi not conn’ed

WiFi conn’ed

 0 20 40 60 80

N
et

w
or

k
st

at
e

Time (s)

Fig. 14. Impact of BT-WiFi handover on QoE of tinyCam app (Huawei Watch, normal BT/WiFi RSSI).

to reveal its handover performance. We define two QoE metrics for the tinyCam app: (1) the frame
one-way delay (OWD), which is the time to transmit a video frame from the security camera to the
watch (including the encoding and rendering time)3, and (2) the downlink throughput on the watch.

Measurement Results. The top plot in Figure 14 shows the QoE metrics of the tinyCam app
during a typical BT-WiFi handover: the frame OWD, the BT throughput, and the WiFi throughput.
As shown, the app QoE severely degrades during the handover. At around t = 6s, the app stops
receiving the video data from the SmartCam and the BT throughput drops to zero. The video
transmission resumes over WiFi at around 72.5s, with high frame OWD observed at the beginning.
We repeat this experiment for 10 times and the average “blackout” period during which the app
does not receive any video data is surprisingly 70.0s. We then run the experiment under the same
setting for our RTApp, whose average handover delay is measured to be 38.6s across 10 runs
(we will explain the difference shortly). We further conduct the experiment on three different
smartwatches and observe high handover delays on all of them as shown in Table 5. The results
show that handovers are poorly handled by the Wear OS and/or the wearable app.

6.3 Root Cause of the High Handover Delay
To understand the root cause of the high handover delay, we break it down into four phases based
on the captured network state information, as shown in the bottom plot in Figure 14: (P1) BT is
still connected but the data cannot be actually transmitted due to poor signal strength, (P2) no
network is available, (P3) the WiFi AP association period, i.e., WiFi is available but not connected,
and (P4) WiFi is connected but there is no application data transmission. The methodology for
the breakdown analysis is as follows. For each network, our measurement tool (Table 3, §2) logs
whether the network is ready to use by applications, i.e., available or not, and whether the interface
provides actual network connectivity, i.e., connected or not, through Wear OS APIs. We then group
both networks’ logged states as shown in Figure 14.
Our analysis reveals two sources of delay that contribute to the overall handover latency: the

delay from the Wear OS (P1, P2, and P3), as well as the delay incurred by the wearable app (P4). We
next detail both types.

Delay from the Wear OS. Under the default network management policy of Wear OS based
wearables, when BT is connected, WiFi is not available (i.e., its interface is turned off by the OS)
even if the device is under the coverage of both BT and WiFi. In this case, when the wearable moves
away from the BT coverage, the Wear OS needs to: wait until the BT connectivity is completely
3To measure the frame OWD, we use a phone to display continuously increasing timestamps from a stopwatch app as the
input stream to the SmartCam. The tinyCam app then shows the captured timestamp on the watch. The frame OWD can
thus be calculated by comparing the timestamps when the same stopwatch frame appears on the phone and watch, whose
timestamps are synchronized beforehand.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 3. Publication date: March 2019.

3:20 X. Zhu et al.

Table 5. BT-to-WiFi handover delay on 3 smartwatches for tinyCam app and RTApp (normal BT/WiFi RSSI).

LG Urbane LG Urbane 2nd HUAWEI Watch
tinyCam 43.1 ± 5.7 s 52.9 ± 8.2 s 70.2 ± 9.7 s
RTApp 28.3 ± 2.6 s 14.3 ± 1.3 s 38.6 ± 5.3 s

lost as its RSSI drops below a threshold (P1), turn on the WiFi interface (P2), and then perform an
AP association (P3). The whole process incurs a long period of time. Across the 10 runs on an LG
Urbane watch, the average duration of P1, P2 and P3 are 12.9s, 15.5s and 8.3s, respectively, with
their total duration accounting for 52% of the overall handover delay.

Delay Incurred by theWearable App.We next investigate the wearable app’s behavior during
a handover event. In the tinyCam app case, even after WiFi gains its connectivity (after P3), the
app still takes around 33.3s on average before the actual data transfer resumes over WiFi (P4). In
contrast, our RTApp only takes 5.6s on average to resume the data transfer. Such a disparity of the
P4 duration causes the two apps’ vastly different handover duration shown in Table 5. In other
words, although the handover completes after P3 from the OS’s perspective, it takes additional time
for the app to actually resume the data transfer (P4). The variation of P4 is very likely attributed to
the app logic. Unfortunately, since Wear OS does not provide an API for seamlessly migrating data
transfers between IP-based and non-IP networks, wearable apps need to implement their own data
migration logic at the app layer. Doing so is tedious and challenging for average app developers.

6.4 Reducing the Handover Delay
We now design and implement a solution that reduces the handover delay. Our basic idea consists
of the following. First, an important reason for Wear OS’s bad handover performance is its reactive
nature, i.e., the WiFi connectivity is not established until the BT connectivity is fully torn down.
Our scheme instead predicts a BT-WiFi handover by monitoring the BT channel quality. When the
quality drops below a threshold (but BT is still usable), we proactively establish theWiFi connectivity
and perform a handover to WiFi (assuming the WiFi channel quality is acceptable). Second, we
leverage the multipath framework introduced in §5.2 to provide application transparency. Before a
BT-WiFi handover, once the WiFi connectivity is established, the OS adds a new WiFi subflow to
the corresponding TCP connection, and schedules future data to the WiFi subflow. No modification
is needed at the user application, which always sees the same TCP connection. Third, our scheme
further leverages reinjection to facilitate seamless data migration. Specifically, when it decides to
perform a BT-WiFi handover, it also sends all unacknowledged (i.e., “in-flight”) data on the BT path,
which may experience long delays due to its weak channel quality, to the WiFi path. In multipath
transport, this is called packet reinjection, which trades a small number of redundant bytes for
better performance (smoother handover in our case).

We implement the above design points and integrate them into our wearablemultipath framework
(§5.2). We use the BT RSSI as the BT channel quality metric [76], and empirically set its threshold
for initiating a handover to -66dBm. A future research direction here is to further leverage the
wearable’s motion sensors or acoustic ranging [64] to precisely track the wearable’s relative position
to the phone in order to facilitate more accurate handover prediction. Using a similar approach, we
also implement the handover mechanism fromWiFi back to BT. We take two approaches to prevent
oscillations between BT and WiFi. First, we use the Kalman filter to smooth the RSSI samples [18].
Second, after a BT-WiFi handover, we require the wearable to stay on WiFi for at least 5 seconds (a
configurable parameter) unless the WiFi connectivity is lost.

Evaluation. We evaluate how our scheme helps accelerate the BT-WiFi handover process. The
experimental setup is as follows. A user puts her Nexus 5X smartphone in a typical conference
room (5m by 6m) and moves out of the room at a normal walking speed with a paired LG Urbane

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 3. Publication date: March 2019.

Understanding the Networking Performance of Wear OS 3:21

 0.1

 1

 10

 100

tinyCam RTApp
In

te
rr

up
tio

n
Ti

m
e

(s
)

Default on-demand WiFi always-on WiFi

Fig. 15. Reducing the BT-to-WiFi handover delay for tinyCam/RTApp on an LG Urbane paired with Nexus 5X.

smartwatch worn on her wrist. As she walks out of the smartphone’s BT coverage, the watch
will experience a BT-WiFi handover. We use the two apps introduced in §6.2 as the workload: the
tinyCam app that streams video contents from our camera in real-time, and our RTApp program
that performs CBR streaming with improved application handover logic. The handover delay is
measured using the same approach for generating Figure 14. We compare three handover schemes
in Figure 15: “default” is the reactive handover approach used by Wear OS; “on-demand WiFi”
corresponds to our proposed scheme where the WiFi connectivity and the multipath subflow are
established in an on-demand fashion based on BT channel quality prediction; “always-on WiFi”
also refers to our scheme, but we always maintain the WiFi connectivity and pre-establish the WiFi
subflow to further speed up the handover. We repeat each experiment 10 times to overcome the
randomness incurred by the user’s walking paths. As shown in Figure 15, our scheme is extremely
effective: it reduces the handover delay from more than 28s to less than 0.6s (123x and 51x reduction
for tinyCam and RTApp, respectively). Note the Y axis is in log scale. For the “always-on WiFi”
variation, the improvement is even higher (172x and 63x respectively) since the pre-establishedWiFi
subflow allows immediate data transfers, but the cost is a slightly higher radio energy consumption
(measured to be 6.2% as described in §5.2) compared to the “on-demand WiFi” variation.

7 RELATEDWORK
Mobile Network Performance has been extensively studied in the past decade. Examples include
crowd-sourced smartphone measurements [28, 39, 40], WiFi/LTE radio energy efficiency [38],
network interface management [14, 65], power management [19, 68, 72], smartphone app perfor-
mance [21, 57], and mobile multipath [56, 58]. Our work differs from the above by investigating
wearable networking with unique characteristics. We propose novel measurement methodologies
and gain new insights in the wearable context.

Wearable Systems. R. Liu et al. analyzed the execution of Android Wear OS and identified
several inefficiencies [48, 49]. X. Liu et al. conducted a user study to understand smartwatch usage
in the wild [51]. Kolamunna et al. studied the user behavior and application traffic characteristics for
SIM-enabled wearables [44]. Chauhan et al. [17] characterized smartwatch apps. Hester et al. [35]
developed an energy-efficient and multi-application wearable platform. There also exist studies
on other aspects of wearable systems including display [54], storage [37], user interface [20, 78],
energy [32, 79], and security [53, 77]. Researchers have also designed new sensing applications [60,
70] using wearables and studied the human-wearable interaction [69, 80]. Our work instead focuses
on the networking aspect of commercial wearable OSes.

Improving Wireless Performance. There has been work on improving BT/BLE communica-
tions [24, 42, 47] and localization [36]. Compared to them, our study identified new BT performance
issues on COTS wearables and provide guidelines for improving the wearable networking per-
formance over BT. There have also been studies on bufferbloat [16, 50, 55, 63, 71]. We instead
discovered severe and unique bufferbloat issues in the wearable context when a paired smartphone
is serving as a proxy (§4.2). In addition, vertical handovers in wireless networks have also been

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 3. Publication date: March 2019.

3:22 X. Zhu et al.

studied in the literature [43, 61, 67]. Here we focus on the handover between IP and non-IP net-
works, and consider both the OS and wearable application behaviors. We also develop a multipath
framework to support bandwidth aggregation and seamless handover. It differs from existing work
on mobile multipath [22, 25, 26, 30, 33, 34, 46, 56, 58, 59, 75] in that our framework focuses on
WiFi/BT networks in the wearable context. We also identify unique performance issues that hinder
wearable multipath on COTS wearables, such as the interference between BT and 2.4G Hz WiFi.

8 LIMITATIONS AND FUTURE WORK
We describe several limitations and future work of our study.
• Besides BT and WiFi, a wearable may have other network interfaces such as LTE and NFC. In
this study, we focus on BT and WiFi due to their popularity and prevalence in today’s wearable
ecosystem (in particular, smartwatches [51, 79]). In our future work, we plan to study the interplay
among more than two types of networks, such as BT, WiFi, LTE, and ZigBee, in terms of multipath,
interface selection, and handover, in the wearable context.
• We only studied a limited number of real wearable apps (YouTube for wearable, TinyCam,
Telegram Messenger, Play Store, etc.). This is mostly because most of today’s wearable apps do
not incur a significant amount of traffic. Nevertheless, we envision that future wearable apps
will become more network-intensive as fueled by new hardware, OS support, and applications.
Examples include continuous computer vision on smart glasses [23, 31], remote camera preview [6],
real-time screen projection [2], and network-level collaboration between phone and watch [52].
We plan to study these new applications in our future work.
• Our study can also be extended to considering multiple devices that a person wears (e.g., smart-
watch, smart glasses, smart activity tracker, etc.). This creates novel use cases, but also brings in
new challenges on, for example, energy-efficient content delivery in a body-net and choosing the
appropriate Internet gateway when there are multiple such gateways.
• Finally, another limitation of our work is that all measurement results are based on the Wear OS,
which, together with its predecessors (Android Wear), are expected to account for 41.8% of the
market share of smartwatch OSes in 2020 [7]. There exist many other wearable OSes. In particular,
due to its proprietary platform and closed ecosystem, it is difficult for us to perform an in-depth
study of Apple’s Watch OS. Nevertheless, we believe that the high-level lessons we learned from
the Wear OS are general, and can benefit the design and implementation of future wearable OSes.
Note that all our findings are applicable to old Android Wear 1.x versions as verified by us.

9 CONCLUDING REMARKS
We have learnedmany lessons from smartphones [38, 39] about the importance of properly handling
the interaction between the lower-layer radio (e.g.,WiFi MAC and cellular RRC/RLC) and upper-
layer protocols (e.g., TCP, apps). Our study reveals that it is also the case for wearable networking.
Indeed, many of its unique characteristics motivate us to conduct an in-depth investigation of the
networking performance of Wear OS. We identify severe performance issues and make suggestions
for improvements regarding several key aspects of wearable networking: Bluetooth performance,
smartphone proxying, network selection, and handover. We believe our findings provide key
knowledge and experiences for improving the networking subsystem of future wearable OSes.

ACKNOWLEDGEMENTS
We would like to thank our shepherd, Carey Williamson, and the anonymous reviewers for their
valuable comments. This work is partially supported by NSF under the grants CCF-1628991 and
CNS-1629763.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 3. Publication date: March 2019.

Understanding the Networking Performance of Wear OS 3:23

REFERENCES
[1] 2016. MPTCP v0.91 Release. http://multipath-tcp.org/pmwiki.php?n=Main.Release91.
[2] 2017. Cicret Bracelet. https://cicret.com/wordpress/.
[3] 2017. Telegram for Android Wear 2.0. https://telegram.org/blog/android-wear-2-0.
[4] 2017. The netfilter.org project. https://www.netfilter.org/.
[5] 2017. tinyCam Monitor PRO. https://play.google.com/store/apps/details?id=com.alexvas.dvr.pro.
[6] 2017. ZenWatch Remote Camera. https://play.google.com/store/apps/details?id=com.asus.rcamera2.
[7] 2018. Market share of smart wristwear shipments worldwide by operating system from 2015 to 2020. https://www.

statista.com/statistics/466563/share-of-smart-wristwear-shipments-by-operating-system-worldwide/.
[8] 2018. Monsoon Power Monitor. https://www.msoon.com/online-store.
[9] 2018. Smartwatch Market Size, Share, Growth, Industry Report, 2018–2023. https://www.psmarketresearch.com/

market-analysis/smartwatch-market.
[10] 2018. Specifications. The building blocks of all Bluetooth devices. https://www.bluetooth.com/specifications.
[11] 2019. MPWear github repository. https://github.com/XiaoShawnZhu/MPWear.
[12] 2019. WearMan github repository. https://github.com/XiaoShawnZhu/WearMan.
[13] Manish Anand, Edmund B Nightingale, and Jason Flinn. 2005. Self-tuning wireless network power management.

Wireless Networks 11, 4 (2005), 451–469.
[14] Ganesh Ananthanarayanan, Venkata N Padmanabhan, Chandramohan A Thekkath, and Lenin Ravindranath. 2007.

Collaborative downloading for multi-homed wireless devices. In Mobile Computing Systems and Applications, 2007.
HotMobile 2007. Eighth IEEE Workshop on. IEEE, 79–84.

[15] Robert Braden. 1989. Requirements for Internet hosts-communication layers. (1989).
[16] Lawrence S. Brakmo and Larry L. Peterson. 1995. TCP Vegas: End to end congestion avoidance on a global Internet.

IEEE Journal on selected Areas in communications 13, 8 (1995), 1465–1480.
[17] Jagmohan Chauhan, Suranga Seneviratne, Mohamed Ali Kaafar, Anirban Mahanti, and Aruna Seneviratne. 2016.

Characterization of early smartwatch apps. In PerCom Workshops. IEEE.
[18] Dongyao Chen, Kang G Shin, Yurong Jiang, and Kyu-Han Kim. 2017. Locating and Tracking BLE Beacons with

Smartphones. In CoNEXT. ACM.
[19] Xiaomeng Chen, Ning Ding, Abhilash Jindal, Y Charlie Hu, Maruti Gupta, and Rath Vannithamby. 2015. Smartphone

energy drain in the wild: Analysis and implications. ACM SIGMETRICS Performance Evaluation Review 43, 1 (2015),
151–164.

[20] Xiang Chen, Tovi Grossman, Daniel Wigdor, and George Fitzmaurice. 2014. Duet: Exploring Joint Interactions on a
Smart Phone and a Smart Watch. In ACM CHI.

[21] Xiaomeng Chen, Abhilash Jindal, Ning Ding, Yu Charlie Hu, Maruti Gupta, and Rath Vannithamby. 2015. Smartphone
background activities in the wild: Origin, energy drain, and optimization. In MobiCom. ACM.

[22] Yung-Chih Chen, Yeon-Sup Lim, Richard J. Gibbens, Erich M. Nahum, Ramin Khalili, and Don Towsley. 2013. A
Measurement-based Study of MultiPath TCP Performance over Wireless Networks. In IMC.

[23] Zhuo Chen, Lu Jiang, Wenlu Hu, Kiryong Ha, Brandon Amos, Padmanabhan Pillai, Alex Hauptmann, and Mahadev
Satyanarayanan. 2015. Early implementation experience with wearable cognitive assistance applications. In WearSys
workshop. ACM, 33–38.

[24] Zicheng Chi, Yan Li, Hongyu Sun, Yao Yao, Zheng Lu, and Ting Zhu. 2016. B2W2: N-Way Concurrent Communication
for IoT Devices. In SenSys. ACM.

[25] Quentin De Coninck, Matthieu Baerts, Benjamin Hesmans, and Olivier Bonaventure. 2016. A First Analysis of Multipath
TCP on Smartphones. In 17th International Passive and Active Measurements Conference, Vol. 17. Springer.

[26] Shuo Deng, Ravi Netravali, Anirudh Sivaraman, and Hari Balakrishnan. 2014. WiFi, LTE, or Both? Measuring
Multi-homed Wireless Internet Performance. In IMC.

[27] Roy Friedman, Alex Kogan, and Yevgeny Krivolapov. 2013. On power and throughput tradeoffs of wifi and bluetooth
in smartphones. IEEE Transactions on Mobile Computing 12, 7 (2013), 1363–1376.

[28] Kensuke Fukuda, Hirochika Asai, and Kenichi Nagami. 2015. Tracking the evolution and diversity in network usage of
smartphones. In IMC. ACM.

[29] Yihua Guo, Feng Qian, Qi Alfred Chen, Zhuoqing Morley Mao, and Subhabrata Sen. 2016. Understanding On-device
Bufferbloat for Cellular Upload. In IMC. ACM.

[30] Yihua Ethan Guo, Ashkan Nikravesh, Z Morley Mao, Feng Qian, and Subhabrata Sen. 2017. Accelerating multipath
transport through balanced subflow completion. In Proceedings of the 23rd Annual International Conference on Mobile
Computing and Networking. ACM, 141–153.

[31] Kiryong Ha, Zhuo Chen, Wenlu Hu, Wolfgang Richter, Padmanabhan Pillai, and Mahadev Satyanarayanan. 2014.
Towards wearable cognitive assistance. In MobiSys. ACM.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 3. Publication date: March 2019.

http://multipath-tcp.org/pmwiki.php?n=Main.Release91
https://cicret.com/wordpress/
https://telegram.org/blog/android-wear-2-0
https://www.netfilter.org/
https://play.google.com/store/apps/details?id=com.alexvas.dvr.pro
https://play.google.com/store/apps/details?id=com.asus.rcamera2
https://www.statista.com/statistics/466563/share-of-smart-wristwear-shipments-by-operating-system-worldwide/
https://www.statista.com/statistics/466563/share-of-smart-wristwear-shipments-by-operating-system-worldwide/
https://www.msoon.com/online-store
https://www.psmarketresearch.com/market-analysis/smartwatch-market
https://www.psmarketresearch.com/market-analysis/smartwatch-market
https://www.bluetooth.com/specifications
https://github.com/XiaoShawnZhu/MPWear
https://github.com/XiaoShawnZhu/WearMan

3:24 X. Zhu et al.

[32] MyungJoo Ham, Inki Dae, and Chanwoo Choi. 2015. LPD: Low Power Display Mechanism for Mobile and Wearable
Devices.. In USENIX ATC.

[33] Bo Han, Feng Qian, Shuai Hao, and Lusheng Ji. 2015. An Anatomy of Mobile Web Performance over Multipath TCP.
In CoNEXT.

[34] Bo Han, Feng Qian, Lusheng Ji, and Vijay Gopalakrishnan. 2016. MP-DASH: Adaptive video streaming over preference-
aware multipath. In Proceedings of the 12th International on Conference on emerging Networking EXperiments and
Technologies. ACM, 129–143.

[35] Josiah Hester, Travis Peters, Tianlong Yun, Ronald Peterson, Joseph Skinner, Bhargav Golla, Kevin Storer, Steven
Hearndon, Kevin Freeman, Sarah Lord, et al. 2016. Amulet: An Energy-Efficient, Multi-Application Wearable Platform.
In SenSys. ACM.

[36] AKMMahtab Hossain and Wee-Seng Soh. 2007. A comprehensive study of bluetooth signal parameters for localization.
In PIMRC. IEEE.

[37] Jian Huang, Anirudh Badam, Ranveer Chandra, and Edmund B. Nightingale. 2015. WearDrive: Fast and Energy-Efficient
Storage for Wearables. In USENIX ATC.

[38] Junxian Huang, Feng Qian, Alexandre Gerber, Z Morley Mao, Subhabrata Sen, and Oliver Spatscheck. 2012. A close
examination of performance and power characteristics of 4G LTE networks. In MobiSys. ACM.

[39] Junxian Huang, Feng Qian, Yihua Guo, Yuanyuan Zhou, Qiang Xu, Z Morley Mao, Subhabrata Sen, and Oliver
Spatscheck. 2013. An in-depth study of LTE: effect of network protocol and application behavior on performance. In
SIGCOMM. ACM.

[40] Junxian Huang, Qiang Xu, Birjodh Tiwana, Z Morley Mao, Ming Zhang, and Paramvir Bahl. 2010. Anatomizing
application performance differences on smartphones. In MobiSys. ACM.

[41] Haiqing Jiang, Yaogong Wang, Kyunghan Lee, and Injong Rhee. 2012. Tackling Bufferbloat in 3G/4G Networks. In
IMC. ACM.

[42] Aditya Karnik and Anurag Kumar. 2000. Performance analysis of the Bluetooth physical layer. In Personal Wireless
Communications. IEEE.

[43] Kyu-Han Kim, Yujie Zhu, Raghupathy Sivakumar, and Hung-Yun Hsieh. 2005. A receiver-centric transport protocol
for mobile hosts with heterogeneous wireless interfaces. Wireless Networks 11, 4 (2005), 363–382.

[44] Harini Kolamunna, Ilias Leontiadis, Diego Perino, Suranga Seneviratne, Kanchana Thilakarathna, and Aruna Senevi-
ratne. 2018. A First Look at SIM-Enabled Wearables in the Wild. In IMC. ACM.

[45] Ronny Krashinsky and Hari Balakrishnan. 2002. Minimizing energy for wireless web access with bounded slowdown.
In Proceedings of the 8th annual international conference on Mobile computing and networking. ACM, 119–130.

[46] HyunJong Lee, Jason Flinn, and Basavaraj Tonshal. 2018. RAVEN: Improving Interactive Latency for the Connected
Car. In Proceedings of the 24th Annual International Conference on Mobile Computing and Networking. ACM, 557–572.

[47] Amit A Levy, James Hong, Laurynas Riliskis, Philip Levis, and Keith Winstein. 2016. Beetle: Flexible communication
for bluetooth low energy. In MobiSys. ACM.

[48] Renju Liu, Lintong Jiang, Ningzhe Jiang, and Felix Xiaozhu Lin. 2015. Anatomizing System Activities on Interactive
Wearable Devices. In APSys.

[49] Renju Liu and Felix Xiaozhu Lin. 2016. Understanding the Characteristics of Android Wear OS. In MobiSys. ACM.
[50] Shao Liu, Tamer Başar, and Ravi Srikant. 2008. TCP-Illinois: A loss-and delay-based congestion control algorithm for

high-speed networks. Performance Evaluation 65, 6-7 (2008), 417–440.
[51] Xing Liu, Tianyu Chen, Feng Qian, Zhixiu Guo, Felix Xiaozhu Lin, XiaofengWang, and Kai . Chen. 2017. Characterizing

Smartwatch Usage in the Wild. In MobiSys. ACM.
[52] Xing Liu, Yunsheng Yao, and Feng Qian. 2017. Rethink Phone-Wearable Collaboration From the Networking Perspective.

In ACM WearSys.
[53] Xiangyu Liu, Zhe Zhou, Wenrui Diao, Zhou Li, and Kehuan Zhang. 2015. When good becomes evil: Keystroke inference

with smartwatch. In CCS. ACM.
[54] Hongyu Miao and Felix Xiaozhu Lin. 2016. Tell Your Graphics Stack That the Display Is Circular. In HotMobile.
[55] Kathleen Nichols and Van Jacobson. 2012. Controlling queue delay. Commun. ACM 55, 7 (2012), 42–50.
[56] Ana Nika, Yibo Zhu, Ning Ding, Abhilash Jindal, Y Charlie Hu, Xia Zhou, Ben Y Zhao, and Haitao Zheng. 2015. Energy

and performance of smartphone radio bundling in outdoor environments. In WWW. ACM.
[57] Ashkan Nikravesh, Qi Alfred Chen, Scott Haseley, Xiao Zhu, Geoffrey Challen, and Z Morley Mao. 2018. QoE Inference

and Improvement Without End-Host Control. In SEC. IEEE.
[58] Ashkan Nikravesh, Yihua Guo, Feng Qian, Z Morley Mao, and Subhabrata Sen. 2016. An in-depth understanding of

multipath TCP on mobile devices: measurement and system design. In MobiCom. ACM.
[59] Ashkan Nikravesh, Yihua Guo, Xiao Zhu, Feng Qian, and Z Morley Mao. 2019. MP-H2: A Client-only Multipath

Solution for HTTP/2. In MobiCom. ACM.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 3. Publication date: March 2019.

Understanding the Networking Performance of Wear OS 3:25

[60] Shahriar Nirjon, Jeremy Gummeson, Dan Gelb, and Kyu-Han Kim. 2015. Typingring: A wearable ring platform for text
input. In MobiSys. ACM.

[61] Christoph Paasch, Gregory Detal, Fabien Duchene, Costin Raiciu, and Olivier Bonaventure. 2012. Exploringmobile/WiFi
handover with multipath TCP. In Proceedings of the 2012 ACM SIGCOMM workshop on Cellular networks: operations,
challenges, and future design. ACM, 31–36.

[62] Christoph Paasch, Simone Ferlin, Ozgu Alay, and Olivier Bonaventure. 2014. Experimental Evaluation of Multipath
TCP Schedulers. In ACM SIGCOMM Capacity Sharing Workshop (CSWS). ACM.

[63] Rong Pan, Preethi Natarajan, Chiara Piglione, Mythili Suryanarayana Prabhu, Vijay Subramanian, Fred Baker, and Bill
VerSteeg. 2013. PIE: A lightweight control scheme to address the bufferbloat problem. In High Performance Switching
and Routing (HPSR), 2013 IEEE 14th International Conference on. IEEE, 148–155.

[64] Chunyi Peng, Guobin Shen, and Yongguang Zhang. 2012. BeepBeep: A high-accuracy acoustic-based system for
ranging and localization using COTS devices. ACM Transactions on Embedded Computing Systems 11, 1 (2012), 4.

[65] Trevor Pering, Yuvraj Agarwal, Rajesh Gupta, and Roy Want. 2006. Coolspots: reducing the power consumption of
wireless mobile devices with multiple radio interfaces. In MobiSys. ACM.

[66] Daji Qiao and Kang G Shin. 2005. Smart power-saving mode for IEEE 802.11 wireless LANs. In INFOCOM 2005. 24th
Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings IEEE, Vol. 3. IEEE, 1573–1583.

[67] Ahmad Rahmati, Clay Shepard, Chad Tossell, Angela Nicoara, Lin Zhong, Phil Kortum, and Jatinder Singh. 2010.
Seamless flow migration on smartphones without network support. arXiv preprint arXiv:1012.3071 (2010).

[68] Marcel-Catalin Rosu, C Michael Olsen, Chandrasekhar Narayanaswami, and Lu Luo. 2004. Pawp: A power aware web
proxy for wireless lan clients. In Mobile Computing Systems and Applications, 2004. WMCSA 2004. Sixth IEEE Workshop
on. IEEE, 206–215.

[69] Matthias Seuter, Max Pfeiffer, Gernot Bauer, Karen Zentgraf, and Christian Kray. 2017. Running with Technology:
Evaluating the Impact of Interacting with Wearable Devices on Running Movement. Proceedings of the ACM on
Interactive, Mobile, Wearable and Ubiquitous Technologies 1, 3 (2017), 101.

[70] Sheng Shen, He Wang, and Romit Roy Choudhury. 2016. I am a Smartwatch and I can Track my User’s Arm. In
MobiSys. ACM.

[71] Dan Siemon. 2013. Queueing in the Linux network stack. Linux Journal 2013, 231 (2013), 2.
[72] Jacob Sorber, Nilanjan Banerjee, Mark D Corner, and Sami Rollins. 2005. Turducken: hierarchical power management

for mobile devices. In Proceedings of the 3rd international conference on Mobile systems, applications, and services. ACM,
261–274.

[73] Peng Sun, Minlan Yu, Michael J Freedman, and Jennifer Rexford. 2011. Identifying performance bottlenecks in CDNs
through TCP-level monitoring. In Proceedings of the first ACM SIGCOMM workshop on Measurements up the stack.
ACM, 49–54.

[74] S. Sundaresan, W. de Donato, N. Feamster, R. Teixeira, S. Crawford, and A. Pescape. 2011. Broadband Internet
Performance: A View From the Gateway . In ACM SIGCOMM.

[75] Yeon sup Lim, Yung-Chih Chen, Erich M. Nahum, Don Towsley, Richard J. Gibbens, and Emmanuel Cecchet. 2015.
Design, Implementation and Evaluation of Energy-Aware Multi-Path TCP. In CoNEXT.

[76] David Tse and Pramod Viswanath. 2005. Fundamentals of wireless communication. Cambridge university press.
[77] He Wang, Ted Tsung-Te Lai, and Romit Roy Choudhury. 2015. Mole: Motion leaks through smartwatch sensors. In

MobiCom. ACM.
[78] Jian Xu, Qingqing Cao, Aditya Prakash, Aruna Balasubramanian, and Donald E. Porter. 2017. UIWear: Easily Adapting

User Interfaces for Wearable Devices. In ACM MobiCom.
[79] Yi Yang and Guohong Cao. 2017. Characterizing and optimizing background data transfers on smartwatches. In 2017

IEEE 25th International Conference on Network Protocols (ICNP). IEEE, 1–10.
[80] Cheng Zhang, Xiaoxuan Wang, Anandghan Waghmare, Sumeet Jain, Thomas Ploetz, Omer T Inan, Thad E Starner, and

Gregory D Abowd. 2017. FingOrbits: interaction with wearables using synchronized thumb movements. In Proceedings
of the 2017 ACM International Symposium on Wearable Computers. ACM, 62–65.

Received December 2018; revised January 2019; accepted February 2019

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 3. Publication date: March 2019.

	Abstract
	1 Introduction
	2 Background and Methodology
	2.1 Wearable Networking Testbed
	2.2 The Wearable Network Measurement Tools

	3 Impact of BT Radio State Machine
	3.1 BT Radio State Primer
	3.2 Inferring the BT Radio State Machines
	3.3 Impact of the Undesired Sniff Mode

	4 Impact of Smartphone Proxying
	4.1 Substantial Bufferbloat in CPROXY
	4.2 Identifying the Root Cause
	4.3 Mitigating the CPROXY Bufferbloat

	5 Performance & Energy Impact of Network Selection
	5.1 Impact of Single-path Interface Selection
	5.2 Multipath Performance on Wearables

	6 BT-WiFi Handover Performance
	6.1 Wearable Handovers are Common
	6.2 Poor Wearable Handover Performance
	6.3 Root Cause of the High Handover Delay
	6.4 Reducing the Handover Delay

	7 Related Work
	8 Limitations and Future Work
	9 Concluding Remarks
	References

