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ABSTRACT
Simultaneously using multiple network paths (e.g., WiFi and cellu-
lar) is an attractive feature on mobile devices. A key component in
a multipath system such as MPTCP is the scheduler, which deter-
mines how to distribute the tra�c over multiple paths. In this paper,
we propose DEMS, a new multipath scheduler aiming at reducing
the data chunk download time. DEMS consists of three key design
decisions: (1) being aware of the chunk boundary and strategically
decoupling the paths for chunk delivery, (2) ensuring simultaneous
sub�ow completion at the receiver side, and (3) allowing a path to
trade a small amount of redundant data for performance. We have
implemented DEMS on smartphones and evaluated it over both
emulated and real cellular/WiFi networks. DEMS is robust to di-
verse network conditions and brings signi�cant performance boost
compared to the default MPTCP scheduler (e.g., median download
time reduction of 33%–48% for fetching� les and median loading
time reduction of 6%–43% for fetching web pages), and even more
bene�ts compared to other state-of-the-art schedulers.

1 INTRODUCTION
Simultaneously using multiple network paths such as cellular and
WiFi to accelerate data transfer is an attractive feature on mobile
devices. It is supported by many commercial products such as Apple
Siri [4], Gigapath by Korean Telecom [1], and Samsung Download
Booster [2]. Researchers have also devised multipath strategies
for applications such as� le download [24, 29], web browsing [15,
16], and video streaming [9, 17, 38]. Currently the most widely
used multipath solution is MPTCP [12], which enables unmodi�ed
applications to leverage multipath by adding a shim layer to the
TCP interface. MPTCP establishes a sub�ow over each network
path. The MPTCP sender distributes the data onto the sub�ows;
the receiver reassembles the data into the original byte stream and
delivers it to the app transparently.

MPTCP (or any transport-layer multipath scheme) has a complex
protocol stack. In this work, we focus on optimizing the schedulers,
which determine how the data is distributed onto the sub�ows.
MPTCP supports di�erent types of schedulers. For example, the
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MinRTT scheduler attempts to deliver the data as soon as possible
by choosing a sub�ow with the smallest RTT unless its congestion
window is full; the ReMP scheduler [13] boosts the reliability by
duplicating packets over all sub�ows. There also exist schedulers
that consider other dimensions such as energy e�ciency [36], path
priority [17] and receiver bu�er occupancy [25].

Despite these e�orts, we found that the multipath scheduler
design is far from being optimal. In a pilot experiment conducted
in §3, we observe that surprisingly, under representative WiFi/LTE
network conditions, the MinRTT scheduler in�ates the download
time for a medium-sized� le by up to 33% compared to the opti-
mal scheduling decision derived o�ine. In real-world networks
with� uctuating bandwidth or latency, MinRTT may perform even
worse (up to 7.5x download time increase, 49% median increase
compared to optimal scheduling) as shown in §7. Regarding the root
cause, our key insight is that for such a� le download, oftentimes
the sub�ows do not complete at the same time at the receiver side.
This inevitably leads to suboptimal performance: if Sub�ow A com-
pletes earlier than Sub�ow B, one could achieve a shorter overall
download time by o�oading some of the tra�c from Sub�ow B
to A. Therefore, achieving simultaneous sub�ow completion is a
necessary condition for minimizing the data transfer time.

The key contribution of this paper is the design, implementa-
tion, and evaluation of DEMS (DEcoupledMultipath Scheduler1), a
new multipath packet scheduler aiming at reducing the data chunk
download time over multiple paths. A data chunk is simply a block
of application-de�ned bytes, which is a very common data transfer
workload in a wide range of applications, e.g., fetching an image,
JavaScript, MP3� le, or video chunk. The key idea behind DEMS
is to achieve simultaneous sub�ow completion at the receiver side
through strategic packet scheduling over decoupled sub�ows in order
to minimize the chunk download time. Accomplishing this seem-
ingly straightforward task, however, faces several challenges. First,
MPTCP by default treats the user data as a continuous stream with-
out even knowing the chunk boundary, letting alone performing
any optimization for it. Second, the scheduler works at the sender
side while we need to balance the� ow completion time at the
receiver side so there exists a “visibility gap” between the sender
and receiver. Third, the task is further complicated by the�uctuat-
ing network conditions in wireless networks. Our judicious design
addresses all above challenges as follows.
• As a� rst prerequisite for optimizing the chunk download time,
DEMS is aware of the boundary of a chunk. Since how the data
within a chunk is delivered does notmatter (as long as the chunk can
1Note here “decoupled scheduling” is di�erent from the decoupled congestion control
in MPTCP.
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be reassembled correctly), DEMS can employ� exible and e�cient
schemes to split the chunk over sub�ows. For example, if only two
paths are involved, one path can send data from the beginning
in the forward direction, and the other path sends data from the
end in the backward direction. Doing so simpli�es our design and
facilitates the performance by decoupling the sub�ows (§4.1).
•We devise a technique to ensure simultaneous sub�ow comple-
tion on the receiver side. To achieve this, at the sender side, DEMS
strategically introduces a timing o�set between the two sub�ows
with di�erent RTTs so that the last packets across all sub�ows will
arrive at the receiver at the same time. The timing o�set is dynam-
ically determined based on the network latency and bandwidth
dynamics (§4.2).
• The� uctuation of bandwidth and latency may still cause some
di�erences in completion times across the sub�ows. To minimize
this negative performance impact, DEMS performs data reinjection:
if one sub�ow� nishes earlier, it can “help” other sub�ows by trans-
mitting a small portion of data (typically towards the end of the
chunk download) that was already assigned to another sub�ow.
Such data may be redundant (i.e., transferred twice over two sub-
�ows) but it helps further reduce the overall download time (§4.3).
We develop a method that adaptively determines the amount of the
redundant data to strike a sweet spot between the performance and
the additional data transmission due to reinjection (§4.4).

DEMS can work with any data transfer size and/or tra�c pattern.
The ideal workload on which DEMS yields the highest bene�ts is
downloading application data chunks, which are very common to
mobile tra�c workloads. A wide range of mobile applications such
as web browsing and video streaming involve downloading such
data chunks (e.g., an HTTP object or a video segment).

We integrated the DEMS components into a holistic system
(§5) and implemented it on commodity mobile devices (§6). We
conducted extensive evaluations over both emulated and real cel-
lular/WiFi networks. The results indicate that DEMS is robust to
diverse network conditions (including challenging multipath en-
vironments) and oftentimes brings signi�cant performance boost
compared to the state-of-the-art. Below highlights some key results.
• In stable network conditions, compared to MinRTT, DEMS re-
duces download time by up to 74%, 57% and 21% for 256KB, 1MB
and 4MB download, respectively, under di�erent combinations of
delay/bandwidth of the paths. DEMS exhibits even better perfor-
mance compared to ReMP, round-robin, and the best single path
approach (§7.2, §7.5).
• In changing network conditions,DEMS reduces the median down-
load time of 256KB and 1MB� les by 12% to 46%, compared to
MinRTT. Meanwhile, our adaptive reinjection scheme e�ectively
reduces the redundant bytes by 48% to 86% compared to the naïve
reinjection scheme while maintaining similar performance (§7.3).
•We conducted� eld tests at 5 real-world locations such as a parking
lot and a grocery store. DEMS reduces the download time by up
to 88%, 83% and 77% for 256KB, 1MB and 4MB� le, respectively,
compared to MinRTT (the median reductions are 33%, 48%, and
42%, respectively). The real-world results are even better than the
in-lab emulation results. Compared to wired networks, wireless
networks like WiFi and cellular can sometimes exhibit high delay
and bandwidth dynamics [22, 23]. Our evaluation demonstrates

that compared to existing multipath schedulers, DEMS is able to
robustly handle such environments (§7.4).
• DEMS reduces the median web page load time (across 10 popular
websites) by 6% to 43% (median: 25%) under real network conditions,
compared to MinRTT (§7.6).

Overall, our� ndings indicate that strategically performing de-
coupled packet scheduling with balanced sub�ow completion can
signi�cantly improve the multipath transport performance, which
translates into better user QoE and improved energy e�ciency (due
to shortened radio-on time [21]). The remaining sections will focus
on the motivation (§3), algorithm design (§4), system integration
(§5), implementation (§6), and evaluation (§7) of DEMS. We discuss
related work in §2 and limitations in §8.

2 RELATEDWORK
Characterization of Mobile Multipath. Several prior e�orts fo-
cus on characterizing the multipath performance over mobile net-
works. Chen et al. [6] studied the� le download performance using
MPTCP over 3G/4G and WiFi. Deng et al. [11] compared the per-
formance between single-path and multipath in the mobile context.
Han et al. [15] investigated the interaction between MPTCP and
web protocols such as HTTP/1.1 and SPDY. Nika et al. [28] charac-
terized the energy e�ciency and performance of radio bundling (i.e.,
multipath) in outdoor environments. Some other recent studies ex-
amined MPTCP performance [8] and its impact on applications [29]
through crowd-sourced measurements.
Multipath Schedulers have been experimentally shown to a�ect
download performance [28, 30, 31]. Several multipath scheduling
algorithms have been proposed for di�erent application scenarios.
ECF makes scheduling decision using both congestion window size
and RTT to avoid undesirable idle transmission periods and achieve
higher aggregate throughput [26]. Compared to ECF, DEMS relies
on chunk-based data transfer to decouple sub�ows and employs
adaptive reinjection to combat variable network conditions. MPRTP
focuses on real-time content delivery over multipath by adapting
to the changing path characteristics [34]. DAPS aims at reducing
receiver’s bu�er blocking time over multiple wireless networks [25].
ReMP duplicates the same packet onto all paths to reduce latency
and to improve reliability [13]. eMPTCP takes energy consumption
into consideration whenmaking scheduling decisions [36]. Another
energy-aware MPTCP scheduling algorithm was proposed in [32].
Compared to the above work,DEMS aims at reducing the download
time for data chunks through a set of novel techniques.
Applications of Mobile Multipath. Previous studies have lever-
aged the MPTCP API extension to support enhanced socket op-
tions [18],� ne-grained control on transport behavior [19], and
multipath over UDP [5]. Some other studies investigated how to
better use multipath for di�erent applications, such as video stream-
ing [7, 9, 17, 38], web browsing [16], smooth handover [10], and traf-
�c sharing across users [27]. In contrast,DEMS is a general-purpose
multipath scheduler that can bene�t a wide range of applications.

3 BACKGROUND AND MOTIVATION
After providing necessary background in §3.1, we reveal the per-
formance ine�ciency caused by MPTCP’s scheduling algorithm
in §3.2, which leads to the key principle of DEMS in §3.3: ensure
simultaneous sub�ow completion.
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Figure 1: Compare chunk
download time (M: Min-
RTT, O: Optimal).

Figure 2: Compare sub-
�ow completion time on
receiver.

3.1 Multipath TCP and its Schedulers
Multipath TCP (MPTCP [12]) enables simultaneous usage of multi-
ple network paths (a.k.a. sub�ows). In the remainder of this paper,
we primarily focus on two paths, as they correspond to the most
common mobile multipath usage scenarios: jointly using WiFi and
cellular on a smartphone or WiFi and Bluetooth on a wearable. We
discuss how DEMS can be extended to more than two paths in §8.

MPTCP has a complex transport protocol stack consisting of
several components: sub�ow management, packet scheduling, con-
gestion control,� ow control, etc., among which we focus on opti-
mizing the schedulers. A multipath scheduler takes packets from
applications (stored in the “meta bu�er”) and determines on which
sub�ow to transmit each packet. MPTCP currently supports three
schedulers: round-robin, ReMP (sending the same data to all sub-
�ows for better reliability), and MinRTT. Among them, MinRTT is
the default scheduler aiming at reducing the overall data transfer
time. As long as the congestion window allows, MinRTT favors the
sub�ow with the smallest RTT so that the packet can be delivered
as soon as possible. The MinRTT scheduler is simple and robust,
and has registered wide usage in practical systems [1, 4].

3.2 Can We Further Improve MinRTT?
Consider the common task of downloading a data chunk, which
can be an image, a Javascript, an audio snippet, or a video chunk,
over multipath. Our apparent goal is to minimize the download
time. We conduct a pilot experiment to demonstrate (1) the impact
of the scheduler on the download time, and (2) the potential room
for improving MinRTT.

The experiment was conducted on a laptop with both WiFi and
Ethernet connectivity, which emulate WiFi and LTE networks re-
spectively using Linux tc. The network characteristics were chosen
based on recent large-scale measurements of metropolitan LTE [22]
and WiFi [35] users2. We use our user-level MPTCP testbed (to be
described in §6) to provide the multipath support for the laptop.

We use the above setting to download a medium-sized� le of
{256KB, 1MB} using the MinRTT scheduler and an optimal schedul-
ing computed o�ine as follows. We download p% of the� le over
WiFi and 1 � p% over cellular. To� nd the best p that leads to the
shortest (i.e., optimal) download time, we perform an “exhaustive

2WiFi: uplink 2020kbps, downlink 7040kbps, RTT 50ms;
LTE: uplink 2286kbps, downlink 9185kbps, RTT 70ms.

search” by conducting many experiments covering the full range
of p 2 [0, 100]. We also vary the latency di�erence between the
two paths by in�ating the emulated LTE path, as it is common to
have diverse path characteristics in mobile networks [11]. Note that
except for the scheduling algorithm, the MinRTT and the optimal
schemes share the same con�gurations (e.g., the initial congestion
window and congestion control algorithm) to ensure apples-to-
apples comparison.

The results are shown in Figure 1. As shown, the scheduling
decision clearly impacts the performance. Surprisingly, compared to
the optimal case, MinRTT increases the download time by up to 33%.
Note our experiment assumes stable network condition, whereas
in real-world networks with� uctuating bandwidth or latency, the
gap between MinRTT and the optimal case can be even larger (up
to 7.5x download time increase, 49% median increase compared to
optimal scheduling) (§7). Also note that researchers have proposed
other MPTCP schedulers such as deadline-aware scheduler [17],
energy-e�cient scheduler [36], real-time content scheduler [34]
and bu�er-blocking-aware scheduler [25]. They usually sacri�ce
chunk download time performance for other properties such as
path priority and energy consumption, so we do not compare with
them here.

By examining the results at the packet timing level, we identi�ed
a key reason why MPTCP yields suboptimal performance to be that
the sub�ows do not complete at the same time at the receiver side.
Figure 2 plots the two sub�ows’ completion time di�erence when
using the two schedulers. For MinRTT, the di�erence ranges from
100ms to 450ms while in the optimal scheme, the last bytes on the
two sub�ows almost always arrive at the receiver simultaneously.

3.3 Ensuring Simultaneous Sub�ow
Completion and its Challenges

Having all sub�ows complete at the same time at the receiver side is
a necessary condition for achieving the optimal performance. The
reason can be easily shown through proof by contradiction: suppose
in an optimal scheme, Sub�ow A� nishes earlier than Sub�ow B;
in that case Sub�ow B can further “o�oad” some bytes to Sub�ow
A, leading to an even shorter download time. But why cannot the
MinRTT scheduler achieve this same-time-completion property?
The reasons are multi-fold as explained below.
• When making a scheduling decision, MinRTT only considers
the latency of each sub�ow without taking into consideration the
bandwidth. Oftentimes, despite one sub�ow having a higher RTT
than other sub�ows or even having a full congestion window (so
it is temporarily unavailable), its higher bandwidth allows it to
drain data from its sender bu�er quickly. As a result, choosing the
higher-RTT sub�ow can actually lead to lower end-to-end latency.
• Under practical network conditions (wireless in particular), the
RTT and bandwidth are often highly� uctuating, leading to unbal-
anced sub�ow completion time. This factor is largely not taken into
account by MinRTT.
•MinRTT is stateless in that the scheduling decision of the current
packet does not explicitly depend on the previous packets. We will
show that by strategically leveraging the information of previously
transmitted packets, the scheduling decisions and thus the overall
performance can be improved.
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Figure 3: Key design decisions of DEMS.

4 THE DEMS ALGORITHM
We propose DEMS, a new scheduling algorithm for reducing the
data chunk download time over multipath. As shown in Figure 3,
the key design decisions of DEMS include the following. (1) DEMS
is aware of the chunk boundary, and it strategically decouples the
paths for chunk delivery (§4.1). (2) DEMS ensures simultaneous
sub�ow completion at the receiver side (§4.2). (3) DEMS allows a
path to trade a small amount of redundant data for performance
(§4.3, §4.4). We next elaborate them in this section.

4.1 Chunk-based Data Transfer
In DEMS, by default, data is delivered to the application on a per-
chunk basis. A (data) chunk consists of a block of bytes de�ned by
the application, which can be, for example, an image, a Javascript,
an audio snippet, or a video chunk. At the sender side, after the
sender app pushes the chunk to the multipath meta bu�er, DEMS
treats all data in the meta bu�er as a chunk by default, thus being
fully transparent to applications. At the receiver side, when the
chunk is fully received, it is then delivered to the application. We
will describe in §5 implementation alternatives for making DEMS
aware of the chunk boundaries informed by applications through a
simple API.

As long as a chunk can be correctly reassembled, bytes within
the chunk can be delivered in any order. The data chunk is thus
split into di�erent parts that are distributed onto di�erent paths for
delivery. For the common scenario involving two paths, we design
a “two-way” splitting approach: the two paths transfer the data in
opposite directions, one from the beginning and the other from the
end; when they “meet” each other, the chunk is fully downloaded.
This approach is intuitive and parameterless. Furthermore, it helps
improve the multipath performance by decoupling the two sub�ows.
In conventional MPTCP, sub�ows are tightly coupled; a stall (e.g.,
due to packet loss) in one sub�ow may slow down other sub�ows
due to their limited and shared meta receive window whose size is
di�cult to set [29]. DEMS, on the other hand, decouples the two
sub�ows by allowing each sub�ow to freely and independently
transfer the data until the very end when sub�ows meet and merge.
The receive window (16 MB by default) is con�gured to be larger
than a typical chunk size so it will not become a performance
bottleneck during a chunk transmission [29]. In rare cases when
the application data is larger than the receive window, the data will
be split into multiple chunks for transmission.

4.2 Simultaneous Sub�ow Completion
Now let us consider how to simultaneously complete sub�ows at
the receiver side. Recall that the high-level idea is to introduce a

Subflow 2 (OWD2, BW2)

Subflow 1
(OWD1, BW1)

SEQ

t 
(sender)ts2 ts1

OWD2 > OWD1

 ts = OWD2 - OWD1

Subflow 2 (OWD2, BW2)

Subflow 1 
(OWD1, BW1)

SEQ

t (sender)

ts2i ts1i

D = SEQ2 - SEQ1 
i=SEQ2

SEQ1

OWD2 > OWD1

 tsi = D / BW1

12

Figure 4: Achieve simul-
taneous sub�ow comple-
tion (sender-side view).

Figure 5: Choose a sub�ow
with an earlier estimated data
arrival time (sender-side view).

timing o�set at the sender to compensate the heterogeneous delay
across both sub�ows.

Let us� rst assume that the one-way delay (OWD) of both sub-
�ows can be accurately predicted. Let OWD1 and OWD2 be the
OWD of Sub�ow 1 and 2, respectively, where OWD2 > OWD1.
Let ts1 and ts2 be the time when the last byte is transmitted over
Sub�ow 1 and 2, respectively. Let tr1 and tr2 be the time when Sub-
�ow 1 and 2 receives the last byte, respectively, i.e., the sub�ow
completion time at the receiver. If no packet reordering or loss
happens, we have:

tr1 � ts1 = OWD1 + to�set (1)

tr2 � ts2 = OWD2 + to�set (2)
where to�set is the clock di�erence between the sender and re-
ceiver (handling network condition� uctuation caused by packet
losses/reordering will be discussed in §4.3 and §4.4). Thus, the
sub�ow completion time di�erence is:

tr2 � tr1 = (ts2 � ts1) + (OWD2 �OWD1) (3)

Clearly the receiver-side sub�ow completion time di�erence
depends on both the sender-side transmission completion time
di�erence denoted as �ts = ts2 � ts1 and the forward-path one-way
delay di�erence denoted as �OWD = OWD2 �OWD1. To ensure
simultaneous sub�ow completion i.e., tr2 = tr1, we need:

ts1 � ts2 = OWD2 �OWD1 = �OWD (4)

Namely, at sender side, the sub�ow with a larger OWD must�nish
transmission �OWD earlier than the other sub�ow.

Recall that DEMS employs the “two-way” data split scheme
where the two sub�ows start from the two ends of the chunk and
move towards each other. This process is illustrated in Figure 4,
which plots the sender-side view of the data transfer progresses at
both sub�ows (the X axis is time and Y axis is the sequence number).
Assuming the constant bandwidth, the data transfer curves are
linear. Sub�ow 2 stops transmission at ts2. Sub�ow 1 then spends
�OWD time to transmit all its data,� nishing at ts1. To translate
this into the receiver-side view is easy: by shifting the two curves
towards the right by OWD1 and OWD2 respectively, they will
meet at ts1 + OWD1 = ts2 + OWD2, indicating they complete
simultaneously at the receiver side.

Now we describe how to incorporate the above idea into the
DEMS scheduler design, which needs to handle two tasks: assigning
each packet (with its byte range) to a sub�ow and deciding when
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Subflow 2 

Subflow 1

SEQ

t (sender)

OWD2 > OWD1

 OWD

SEQ

t (receiver)

 OWDreal -  OWD

(a) Sender-side subflow
balancing with  OWD

(b) Receiver-side view with
actual  OWDreal >  OWD

Figure 6: Impact of inaccurate �OWD estimation.

to stop a sub�ow at the sender. The former is trivial as the chunk
has already been split in “two-way”. So we focus on the latter task.
The basic idea is as follows. When the sub�ow with a larger OWD
can transmit a packet over the network, we estimate its arrival time
over both sub�ows, and then choose the sub�ow with an earlier
packet arrival time for actual transmission. We next show that
this strategy will make the large-OWD sub�ow stop transmission
when Equation (4) holds, thus resulting in simultaneous sub�ow
completion shown in Figure 4.

Consider a general scenario depicted in Figure 5 where Sub�ow
2 with a larger OWD can now transmit a byte whose sequence
number is i = SEQ2. Should this byte be immediately transmitted
over Sub�ow 2 (marked as À) or later over Sub�ow 1 (marked as
 ) so that Sub�ow 2 can stop now? If we choose Sub�ow 2, the
byte’s estimated arrival time at the receiver side is:

est (tr2i ) = ts2i +OWD2i + to�set (5)

where ts2i is the current sender-side timestamp and OWD2i is the
current estimation of OWD2. Now consider choosing Sub�ow 1 to
transmit SEQ2. Since Sub�ow 1 is currently working on a byte with
a smaller sequence number SEQ1, SEQ2 has to be bu�ered in the
meta bu�er and gets transmitted at   after all bytes from SEQ1 to
SEQ2 � 1 are transmitted (over Sub�ow 1). Therefore, the estimated
arrival time of SEQ2 over Sub�ow 1 is:

est (tr1i ) = ts2i + �tsi +OWD1i + to�set (6)

The bu�ering delay, �tsi, is computed as:

�tsi =
SEQ2 � SEQ1

BW1i
(7)

where BW1i is Sub�ow 1’s current bandwidth estimation.
As said, we stop Sub�ow 2 and choose Sub�ow 1 when the

estimated byte arrival time of the larger-OWD sub�ow (Sub�ow 2)
is later than the smaller-OWD sub�ow (Sub�ow 1) i.e., est (tr2i ) >
est (tr1i ). In this situation, we have:

�tsi = ts1i � ts2i < OWD2i �OWD1i (8)

This is the same criteria as that in Equation (4), which guarantees
the same receiver-side sub�ow completion time. Next, plugging
Equation (7) into (8) yields:

D = SEQ2 � SEQ1 < (OWD2i �OWD1i )BW1i (9)

D corresponds to the number of bytes remaining to be transmit-
ted in the meta bu�er (imagine SEQ1 and SEQ2 as two “pointers”
moving towards each other). We use Equation (9) in our system to

SEQ

t(sender)

Subflow 1

Subflow 2

RTT2

RTT1

ts2R ts1R

Reinj.

Figure 7: A simple reinjection scheme.

determine when to stop the transmission for the larger-OWD sub-
�ow as the two-way chunk download approaches to its end. Note
the small-OWD sub�ow can always transmit new packets before
meeting with the large-OWD sub�ow, as long as the congestion
window allows.

4.3 Handling Variable Network Conditions
So far we assume that both sub�ows’ OWD and the smaller-OWD
sub�ow’s bandwidth (i.e., those on the right-hand side of Equation
(9)) can be accurately predicted. Apparently this assumption does
not always hold in practice in particular for wireless networks.
Figure 6 illustrates the impact of inaccurate network condition es-
timation. At the sender side shown in Figure 6(a), DEMS makes
scheduling decisions based on its estimated �OWD. Now assume
Sub�ow 2’s OWD increases over time, causing the sender to un-
derestimate �OWD. In consequence, at the receiver side shown in
Figure 6(b), the actual data reception time over Sub�ow 2 (in solid
line) deviates from the expected time shown in the dashed line.
As a result, Sub�ow 1 completes early than Sub�ow 2, leading to
suboptimal chunk download time. Similar reasoning can be made
for �OWD overestimation and inaccurate bandwidth estimation.

DEMS tolerates unbalanced completion of sub�ows under vari-
able network conditions. It also takes a key design decision of
performing reinjection: instead of having a full stop when all bytes
of a chunk are transmitted, a sub�ow may further “overshoot” its
portion by sending a small number of bytes that are beyond the
meeting point of the two sub�ows, as illustrated in Figure 7. These
bytes are redundant because they have already been transmitted
over the other sub�ow. The purpose of reinjection is to trade re-
dundant data for better performance: under uncertain network
conditions, if the reinjected (redundant) data arrives earlier than
its original copy, the overall download time is reduced.

A key challenge here is to carefully control how many bytes to
reinject: reinjecting too little data incurs suboptimal performance,
while reinjecting too much causes unnecessary battery drain or
data plan usage (for cellular networks). In the extreme case adopted
by MPTCP’s redundant scheduler (ReMP) that duplicates every byte
onto the secondary� ow, MPTCP falls back to the “best single path”
approach.

In DEMS, reinjection only occurs near sub�ows’ meeting point.
We� rst present a simple reinjection approach that gives a rea-
sonable “upper bound” for the number of reinjected bytes. In this
approach, after the two sub�ows meet, they perform reinjection
in their corresponding directions until all bytes of the chunk are
either acknowledged or reinjected. As shown in Figure 7, Sub�ow
2 keeps reinjecting data until ts2R when it hits the byte that was
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Figure 8: The adaptive reinjection scheme. All OWD values
are exaggerated in the plot for illustration purpose.

transmitted and acknowledged over Sub�ow 1 (it takes RTT1 for the
ACK to arrive). Similarly, Sub�ow 1 stops reinjection at ts1R when
the remaining data has been acknowledged by Sub�ow 2. At ts1R ,
any byte within the chunk has either been acknowledged (shown
as thick lines in Figure 7, or has a redundant copy in� ight (shown
as thin lines). By analyzing the “X” shape in Figure 7 (assuming the
last byte on each sub�ow is not lost or reordered), we can compute
the total number of reinjected bytes to be:

Reinj =
BW1BW2

BW1 + BW2
(RTT1 + RTT2) (10)

where BW1 and BW2 are the bandwidth of the sub�ows. Note they
are the slopes of the two lines in Figure 7.

Equation (10) gives a reasonable upper bound of the reinjection
overhead, which however is still too high as to be evaluated in §7.
More importantly, this reinjection approach is not adaptive in that
the reinjection behavior remains the same regardless of the network
condition� uctuation. Ideally, when the� uctuation is low (high), we
should reinject less (more) data given that the sub�ow completion
time balancing technique introduced in §4.2 is more (less) reliable.

4.4 Adaptive Reinjection
We design a scheme that performs adaptive reinjection while main-
taining good performance. Let us� rst consider a scenario where
�OWD is underestimated: its real value, denoted as �OWDREAL, is
�OWD (the estimated version) plus � . We useOWD1 andOWD2 to
denote the estimated OWD for each sub�ow, and use OWD1,REAL
and OWD2,REAL to denote their real values, respectively. Since
what really matters is the prediction accuracy of the di�erence be-
tween OWDs (i.e., �OWD), without loss of generality we assume
OWD1,REAL = OWD1 and OWD2,REAL = OWD2 + � , for the ease
of presentation.

Under the above setting, let us� rst examine the sender side
illustrated in Figure 8(a). Based on the completion time balancing
technique introduced in §4.2, Sub�ow 1 and 2 would stop at tC
and tB respectively where tC � tB = �OWD. However, �OWD is
underestimated. As a result, if we switch to the receiver’s view in
Figure 8(b), we will see that Sub�ow 1 completes � time units before
Sub�ow 2. This is because (assuming there is no clock drift between
sender and receiver) tE = tC +OWD1 and tG = tB +OWD2,REAL,
so tG � tE = (OWD2,REAL � OWD1) � (tC � tB ) = � . Now let us
consider how to perform reinjection. In Figure 8(b), to minimize the
download time, Sub�ow 1 only needs to keep reinjecting data until
it meets Sub�ow 2. The reinjected portion is highlighted in bold.

Now we derive the sender-side reinjection policy by shifting the
reinjected portion back to Figure 8(a). When Sub�ow 1 reinjects the
last byte at tD , the byte’s original transmission time (by Sub�ow 2)
is tA. As shown, tD�tA = (tB�tA )+(tC�tB )+(tD�tC ) = (tG�tF )+
(tC�tB )+(tF �tE ) = �OWD+� , which is the threshold for stopping
reinjection. In otherwords, when�OWD is underestimated by � , the
smaller-OWD sub�ow keeps reinjection until the to-be-reinjected
byte was transmitted more than �OWD + � time units ago. That is
(using the notions introduced in §4.2):

�tsi = ts1i � ts2i > OWD2i �OWD1i + � (11)

Let the number of the reinjected bytes be r . By examining the
gray triangle in Figure 8(b), we have r/BW1 + r/BW2 = � , which
leads to r = �BW1BW2/(BW1 + BW2) where BW1 and BW2 are the
sub�ows’ bandwidth.

The counterpart scenario of �OWD overestimation can be de-
rived in a similar way (proof omitted): when�OWD is overestimated
by � , the larger-OWD sub�ow keeps doing reinjection until the to-
be-reinjected byte was transmitted less than �OWD � � time units
ago, which is:

�tsi = ts1i � ts2i < OWD2i �OWD1i � � (12)

The reinjection overhead is also r = �BW1BW2/(BW1 + BW2). In
reality we can only estimate (with a certain level of con�dence) that
�OWDREAL falls in the range of [�OWD � � ,�OWD + � ]. DEMS
thus lets both sub�ows to reinject according to Equation (11) and
(12). The overall reinjection overhead is:

Reinj = 2�
BW1BW2

BW1 + BW2
(13)

These redundant bytes also help tolerate the inaccurate bandwidth
prediction for the smaller-OWD sub�ow, as well as help recover
from packet losses (within the reinjected byte range) quickly. Com-
pared to (10), Equation (13) is usually much smaller. It is also adap-
tive as it is a function of � that can be con�gured based on the
predictability of the network condition. For example, � can be set
to k · StdDe� (�OWD).

4.5 Put Everything Together
We now walk through Algorithm 1, which combines chunk-based
transfer (§4.1), sub�ow completion time balancing (§4.2), and adap-
tive reinjection (§4.4). The scheduling algorithmworks at the sender
side (the receiver-side logic is trivial). The input consists of the two
network paths and a meta bu�er that stores the packetized chunk
data to be transmitted. The algorithm is invoked whenever either
sub�ow can transmit a packet (i.e., has some empty congestion
window space). It makes a decision of transmitting a new packet,
reinjecting a previously transmitted packet, or withholding trans-
mission. Also note it only processes unacknowledged packets.

Line 7–13 handles the sub�ow with a smaller OWD. Recall that
in §4.2, the default behavior is to always transmit a new packet
over a small-OWD sub�ow whenever possible. Line 11–13 deals
with the reinjection scenario according to Equation (11). Line 15–18
processes the sub�ow with a larger OWD. According to Equation
(9), we may need to skip the large-OWD sub�ow to achieve simul-
taneous sub�ow completion. Line 16 performs adaptive reinjection
over the large-OWD sub�ow according to Equation (12).
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Algorithm 1: The DEMS scheduling algorithm
Input: sub�ow i 2 {1, 2} that can transmit packet, packets in the meta bu�er

metaBuf [j], j 2 [0,m].
Output: packet packet to transmit over sub�ow i .

1 packet GetNextUnAckedPacketOnThisSubflow(i);
2 smallOwdNo GetSmallOWDSubflowNo();
3 largeOwdNo GetLargeOWDSubflowNo();
4 �OWD Get�OWD();
5 �  Get�OWDVar();
6 trans false;
7 if i == smallOwdNo then
8 if not packet.tx [i] then
9 trans true;

10 else
11 delay ts � packet.ts [largeOwdNo];
12 if delay  �OWD + � then
13 trans true;

14 else
15 bw GetSubflowBW(smallOwdNo);
16 thres (�OWD � � ) ⇤ bw;
17 if GetUntransmittedSize(metaBuf ) � thres then
18 trans true;

19 if trans then
20 Transmit(packet);
21 packet.ts [i] GetCurrTimestamp();
22 else
23 packet NULL;

5 SYSTEM DESIGN
We now elaborate on how to integrate the DEMS algorithm into
a real system. Figure 9 plots the system diagram. At the sender
side (right), the chunk data coming from the application is stored
in the meta bu�er, and is then split, scheduled, and transmitted
by the packet scheduler. Working with the packet scheduler, the
reinjection manager keeps track of packets’ transmission states
and makes decisions on adaptive reinjection. We also design a
module for measuring and predicting network conditions (�OWD
and bandwidth). The application can also optionally specify the
chunk size through an API (to be elaborated next). The receiver side
logic is much simpler. It passively receives/acknowledges the data,
reassembles it in the receiver-side meta bu�er, and delivers the
in-order data to the application. Note that data over the (decoupled)
sub�ows are acknowledged separately using the per-sub�ow ACK
numbers. Meanwhile, similar to MPTCP, at the receiver meta bu�er,
the global sequence number carried by each packet is used to mark
which portion within the chunk has been received. While Figure 9
illustrates one-way data transfer, our system supports full-duplex
data transmission.

Interaction with Applications. DEMS provides applications
with an optional hint API (through a socket option) to specify
the chunk boundary, allowing DEMS to work on the chunks se-
quentially and to minimize the download time for each of them.
Alternatively, if no hint is provided, DEMS leverages a heuristic
that treats all data in the meta bu�er as a single chunk. One issue
here is that more data may arrive at the tail of the meta bu�er from
the app when the transmission is in progress. To handle this, we
modify the packet fetch function (Line 1 in Algorithm 1) to let one
sub�ow always fetch unacknowledged packets from the head of
the meta bu�er and the other sub�ow fetch from the tail of the
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Measuring
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and Prediction

Receiver
Meta Buffer

In-order
Delivery

Data
To

App
Sender

Meta Buffer

Subflow 1
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Packet
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App

Reinjection 
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Figure 9: System diagram of DEMS.

meta bu�er. The meta bu�er is realized using a circular queue to
allow e�cient space reuse. In this way, DEMS is fully transparent
to both the client-side and server-side applications. When there are
multiple connections transmitting data simultaneously, DEMS can
use a separate meta bu�er for each connection and take bytes from
each meta bu�er in a round robin manner so that each connection
is given a fair share of the network bandwidth. Other scheduling
strategies such as� ow prioritization can also be realized in DEMS.

�OWDMeasurement and Prediction.OWDmeasurement re-
quires cooperation between the sender and the receiver. The sender
records the timestamp of each outgoing packet; the receiver records
the reception time and sends it and the sequence number back to
the sender through an encapsulated control message (§6). OWD is
then estimated at the sender using exponential weighted moving
average (EWMA) with � empirically chosen to be 0.25. Note that
estimated OWD contains the sender-receiver clock drift, which
is nevertheless cancelled out when a �OWD sample is calculated.
Also, in wireless networks (cellular in particular), network latency is
often correlated with the number of bytes-in-�ight (BIF) [14, 23, 39].
We thus bin OWD samples for each sub�ow separately using mea-
sured BIF with a bin size of 10KB. The samples in each bin are
processed separately using EWMA to facilitate a more accurate
OWD estimation for each sub�ow at di�erent BIF levels. We set � ,
the parameter controlling adaptive reinjection (§4.4), to be the stan-
dard deviation of �OWD. The sub�ow bandwidth is also estimated
using EWMA over measured samples. Note DEMS only needs the
bandwidth estimation for the sub�ow with a smaller OWD (see
Equation (9)). DEMS can also incorporate more sophisticated pre-
diction methods (e.g., those taking special consideration of network
uncertainties [20]) to improve the prediction accuracy.

Congestion Control and Packet Losses. DEMS is compatible
to any congestion control (CC) algorithm such as decoupled CC,
LIA [37] and OLIA [24]. In our experiments we use decoupled
CC that mobile multipath typically uses [15, 29]. Also, DEMS is
robust to packet losses. Since the network condition prediction is
performed in an online manner, delay or bandwidth�uctuation
caused by (real or spurious) packet losses can be quickly picked up
and re�ected in the scheduling decision changes. We demonstrate
in §7.4 that DEMS works well under diverse real-world scenarios
including those with poor network conditions.

6 IMPLEMENTATION
DEMS can be directly integrated into MPTCP as a new scheduler.
However, from the perspective of conducting real-world evalua-
tions, MPTCP has two issues:� rst, most of today’s commercial
Internet servers do not yet support MPTCP, making testing real
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workload di�cult; second, MPTCP uses special TCP options that
are often blocked by commercial cellular middleboxes [29].

To facilitate real-world test, we implemented a multipath TCP
proxy infrastructure in C/C++. Between the proxy and the client
host, multipath is realized as multiple conventional TCP connec-
tions each corresponding to a sub�ow established over a network
path. For uplink tra�c, at the client side, an application TCP connec-
tion’s data is transparently split over the sub�ows using a custom
light-weight encapsulation protocol (as opposed to using special
TCP options); the data is then merged at the proxy and delivered
to the server over conventional single-path TCP to ensure server
transparency (assuming the client-proxy paths are the bottleneck).
The downlink tra�c is handled symmetrically. We have replicated
MPTCP’s three schedulers: MinRTT, round-robin, and ReMP by
precisely following their algorithms. Compared to MPTCP, our
proxy-based approach o�ers the same performance (based on our
lab test3) while providing server transparency andmiddlebox friend-
liness.

We then implemented DEMS on our multipath proxy infrastruc-
ture. Most of the scheduling logic is implemented in the user space.
Some low-level functionalities such as OWD/bandwidth measur-
ing and prediction are implemented in the kernel through a light
kernel module. Overall DEMS is lightweight: our implementation
(not including the base proxy system) consists of 970 LoC (450
LoC for the scheduler and 520 LoC for network condition measure-
ment/prediction). DEMS is generally compatible with Linux-based
systems.

7 EVALUATION
We systematically evaluate DEMS under various settings including
di�erent network setups (emulated vs. real networks), di�erent
network conditions (stable vs.� uctuating), di�erent workload (raw
chunk download vs. real application workload), di�erent clients
(smartphone vs. laptop), etc.

7.1 Experimental Setup and Methodology
We study three variants of DEMS: DEMS-B, DEMS-S, and DEMS-F.
They all employ chunk-based data transfer, decouple the sub�ows
in the “two-way” manner, and attempt to ensure simultaneous sub-
�ow completion (§4.1 and §4.2). Their di�erences are the reinjection
policy. DEMS-B (“Basic”) does not perform reinjection; DEMS-S
(“Simple reinjection”) employs the naïve reinjection strategy de-
scribed in §4.3; DEMS-F (“Full”) performs the adaptive reinjection
described in §4.4.

Our evaluation focuses on� le download (upload can be handled
by DEMS symmetrically). We set up our multipath proxy (devel-
oped in §6) on a commodity server with 4-core 3.6GHz CPU, 16GB
memory, and 64-bit Ubuntu 16.04. The meta bu�ers at both the
proxy and the receiver side are con�gured to be su�ciently large
to avoid performance degradation due to limited bu�er size. For
apples-to-apples comparison, all schedulers use the same decoupled
TCP congestion control (TCP CUBIC) and same sub�ow-level TCP
send/receiver bu�er sizes (8MB by default). Unless otherwise noted,
the application server (hosting a� le or web contents) is near the

3In the test, the server is co-located with the proxy to ensure MPTCP and our approach
traverses the same network paths.

proxy, and uses only single-path. The RTT between the proxy and
the app server is con�gured to be 4ms, which is the median RTT
between a mobile ISP gateway (where our proxy can be deployed)
and 30 popular content providers’ servers based on a recent mea-
surement study [33]. The client-proxy paths covering the “last-mile”
wireless hops are thus the bottleneck.

We evaluated DEMS over both emulated and real multipath
environments of WiFi and cellular. For emulation, we use Linux
tc to throttle the bandwidth and to add extra delay on the client-
proxy paths. By default, we use the network condition pro�les from
large-scale measurements of metropolitan LTE [22] and WiFi [35]
users (same numbers as those used in §3.2). To emulate in-network
bu�ering, we keep a 50ms bottleneck bu�er for WiFi and a 500ms
bottleneck bu�er for LTE (set based on [23]) using tc.

We use two devices for evaluation: a laptop and a smartphone.
The laptop is an HP EliteBook 840 with 1.90GHz dual-core CPU
and 8GB memory, running Linux 3.18. When doing emulations over
the laptop, we use Ethernet to emulate the LTE network, and use
WiFi as it is. The smartphone is a Nexus 6p running Android 7.0 on
Linux 3.10. We use its WiFi and cellular interfaces for experiments.

Recall in §5 that an application can interact with DEMS either
using or not using a hint API. We adopt the non-API mode so
DEMS is fully transparent to our applications. Finally, note that all
evaluations were conducted on our multipath proxy infrastructure
instead of MPTCP (recall in §6 that we replicated all MPTCP’s
schedulers on our infrastructure).

7.2 Stable Network Conditions
We� rst study the performance of DEMS under stable network
conditions using emulation. Theworkload is� le download. For each
test, we repeat the download for 10 times and report the average
value. We consider di�erent delay di�erences and bandwidth of
the two paths. Unless otherwise noted, we use MinRTT, the default
MPTCP scheduler, as the comparison baseline.
Di�erent Delay Di�erences. Figure 10 compares the download
time across the three DEMS variants and MinRTT for di�erent
�le sizes. We consider three RTT combinations to cover di�erent
sub�ow delay di�erences. All three DEMS variants outperform
MinRTT. Among the three variants, DEMS-S achieves the highest
download time reduction (15% to 38% compared to MinRTT) for
medium-sized� les (128KB to 1MB) due to its aggressive reinjection
behavior. The performance gain brought by DEMS-F decreases
slightly in most cases. However, Figure 11, which compares the
size of reinjected data incurred by DEMS-S and DEMS-F, clearly
indicates that DEMS-F strikes a much better balance between the
performance and the reinjection overhead: compared to DEMS-S,
DEMS-F reduces the reinjected data size by 23% to 100%. Regarding
DEMS-B, it slightly falls behindDEMS-F by up to 8%. The di�erence
is small because the network conditions are stable here.

Figure 10 indicates that DEMS brings more download time re-
duction as the two paths’ RTT di�erence becomes larger. This is
because a larger RTT di�erence usually indicates a larger �OWD
that leads to more room for DEMS to balance the sub�ow comple-
tion time. Figure 10 also shows thatDEMS’s bene�ts are maximized
when the� le size is small or medium. For large� les such as 8MB, all
four schemes exhibit similar performance. The reason, as mentioned
in §8, is that the sub�ow completion time di�erence is dwarfed
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(b) WiFi RTT 50ms, LTE RTT 270ms
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(c) WiFi RTT 50ms, LTE RTT 470ms

Figure 10: Compare performance between DEMS and MinRTT on downloading� les with di�erent sizes (laptop, emulation).
The WiFi and LTE bandwidth are 7040kbps and 9185kbps respectively.
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(b) WiFi 50ms, LTE 270ms

Figure 11: Compare redundant data betweenDEMS-S andDEMS-F (laptop, emulation).
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Figure 12: Compare sub�ow comple-
tion time di�erence (laptop, emulation,
WiFi RTT 50ms, LTE RTT 270ms).
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(b) 1MB download
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(c) 4MB download

Figure 13: Download time reduction brought by DEMS-F compared to MinRTT under 36 bandwidth combinations (laptop,
emulation, WiFi RTT 50ms, LTE RTT 70ms).

by the long download duration. Nevertheless, we do expect that
for future faster networks such as 5G network, DEMS will bene�t
large transfers. For the 64KB� le download in Figure 10(c), all four
schemes have the same performance because in this case the best
strategy is to use the best single path.

Figure 12 plots the sub�ow completion time di�erence (measured
at the receiver) between the two paths when three schedulers are
used. It con�rms that our algorithm in §4.2 e�ectively achieves
simultaneous sub�ow completion, which leads to shorter chunk
download time compared to MinRTT.
Di�erent Bandwidth Combinations. To understand the impact
of the paths’ bandwidth on DEMS, We compare the download time
of DEMS-F and MinRTT under 6*6=36 bandwidth combinations
of WiFi and emulated LTE networks, for three� le sizes (256KB,
1MB, and 4MB). The bandwidth of each path varies from 2.5Mbps to
27.5Mbps. The heat maps in Figure 13 visualize the download time
reduction brought by DEMS-F compared to MinRTT. We observe
two trends. First, as theWiFi bandwidth increases, the overall down-
load time decreases. Therefore the optimizable portion of DEMS

(i.e., the two sub�ows’ completion time di�erence) becomes more
prominent, leading to more perceived performance enhancement.
Second, increasing the LTE bandwidth also shortens the down-
load time. However, it also reduces the in-network queuing delay
and henceforth reduces �OWD. Therefore when� xing the WiFi
bandwidth and increasing the LTE bandwidth, the download time
reduction incurred by DEMS is not prominent. Overall, DEMS-F
achieves up to 74%, 57%, and 21% of download time reduction for
256KB, 1MB and 4MB download, respectively, compared to Min-
RTT.

7.3 Varying Network Conditions
We next evaluate how DEMS performs under changing network
conditions. We consider� uctuating latency and bandwidth sepa-
rately.

Varying Latency.We conduct experiments at a location on our
campus where the RTTs of both WiFi and LTE experience high
variance (the stddev of RTT is up to 40% and 50% of the mean for
WiFi and LTE, respectively) while the bandwidth is su�ciently

Paper Session III: Invisible Cobwebs MobiCom’17, October 16-20, 2017, Snowbird, UT, USA

149



 0.5

 1

 1.5

256KB 1MBN
o
rm

a
liz

e
d
 d

o
w

n
lo

a
d

tim
e
 (

Y
-a

xi
s 

fr
o
m

 0
.4

)

Size

MinRTT
DEMS-B

DEMS-S
DEMS-F

(a) BW Pro�le 1: download time

 0
 50

 100
 150
 200
 250
 300
 350
 400

256KB 1MB

R
e
d
u
n
d
a
n
t 
d
a
ta

 (
K

B
)

Size

DEMS-S
DEMS-F

(b) Pro�le 1: redundant data

 0.5

 1

 1.5

256KB 1MBN
o
rm

a
liz

e
d
 d

o
w

n
lo

a
d

tim
e
 (

Y
-a

xi
s 

fr
o
m

 0
.4

)

Size

MinRTT
DEMS-B

DEMS-S
DEMS-F

(c) BW Pro�le 2: download time

 0
 100
 200
 300
 400
 500
 600
 700

256KB 1MB

R
e
d
u
n
d
a
n
t 
d
a
ta

 (
K

B
)

Size

DEMS-S
DEMS-F

(d) Pro�le 2: redundant data

Figure 14: Compare di�erent scheduling algorithms under varying network conditions (laptop, trace-driven emulation).
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Figure 16: Downlink throughput of
real WiFi and LTE at� ve locations.

high. We then throttle the bandwidth to 7040kbps and 9185kbps
for WiFi and cellular respectively before launching the� le down-
load experiments (256KB and 1MB, each repeating 10 times). The
results are the following (�gure not shown). DEMS-F and DEMS-S
achieve similar download time that is 14% to 27% lower compared
to MinRTT, respectively. However the reinjected data incurred by
DEMS-F is much smaller – only 15% to 53% compared to DEMS-S.
Also DEMS-B’s download time is 12% worse compared to DEMS-F
due to the reinjection performed by DEMS-F, which is particu-
larly useful when it is di�cult to accurately predict the network
condition.

Varying Bandwidth.We take a “record and replay” approach
to realistically emulate the varying bandwidth. We collect 5-minute
bandwidth traces of both paths from two campus locations. The
bandwidth at both locations is highly variable, with their stddev
being up to 54% and 92% of the mean bandwidth for WiFi and LTE,
respectively. The� rst location has overall lower bandwidth com-
pared to the second. We then replay (emulate) the two bandwidth
traces in our lab while maintaining stable baseline RTT. The results
are plotted in Figure 14. Compared to MinRTT, DEMS-F reduces
the median download time by 12% to 46% for the two bandwidth
pro�les, as shown in subplot (a) and (c). DEMS-S only marginally
outperforms DEMS-F, at the cost of reinjecting much more data
(1.9x to 7.1x) as shown in subplot (b) and (d). Also both DEMS-
F and DEMS-S yield better results than DEMS-B, again because
reinjection helps absorb the uncertainty of the varying network
conditions.

7.4 Field Test under Real-World Settings
We now perform� eld test to assessDEMS under real-world settings.
We went to� ve locations: residential apartment, o�ce, campus li-
brary, parking lot, and grocery store to conduct experiments of

downloading� les of di�erent size (256KB, 1MB, and 4MB). For
each� le size, we used the Nexus 6p smartphone to repeatedly per-
form� le download using DEMS-F and MinRTT back to back for 5
minutes over multipath (cellular network provided by a large U.S.
carrier and commercial WiFi). The results are shown in Figure 15,
which indicates that the network conditions at the� ve locations are
indeed very diverse. Overall we obtained encouraging results: com-
pared to MinRTT,DEMS-F reduces the download time by up to 88%,
83%, and 77% for 256KB, 1MB and 4MB download, respectively; the
median download time reduction is 33%, 48%, and 42%, respectively.
The download time variance is also reduced by DEMS-F.

The above improvements are attributed to the di�erent path
characteristics between WiFi and cellular networks that are not
handled well by MPTCP. Compared to wired networks, wireless
networks like WiFi and cellular can sometimes exhibit high delay
and bandwidth dynamics [22, 23] that pose challenges to multi-
path schedulers. To illustrate this, Figure 16 shows the downlink
throughput of each sub�ow calculated every 200ms when down-
loading 4MB� les. As shown, at many locations, WiFi and LTE
networks exhibit di�erent and highly variable bandwidth that can
a�ect their OWD and the OWD prediction accuracy. As shown
in Figure 17, oftentimes the relative OWD of WiFi and LTE are
indeed highly variable, and larger� le downloads have even higher
variabilities. The� uctuation of bandwidth and delay makes it hard
to accurately predict OWD. For example, when downloading 4MB
�les at the Residence location, the relative OWD of LTE ranges from
100ms to 1.3s, causing its prediction error to reach up to 800ms.
DEMS does not fully rely on such predictions and instead employs
adaptive reinjection described in §4.4 to more robustly handle the
performance variability of many wireless network settings.
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Figure 18: Compare performance among DEMS-F and four other schedulers (laptop, emulation).

7.5 Compare with Other Schedulers
Besides studying MinRTT, We further compare DEMS-F with three
other scheduling approaches: round-robin, ReMP [13], and using the
best single path to download a� le. Figure 18(a) and (b) compare the
�le download time using the� ve schemes for two emulated stable
network conditions. Figure 18(c) conducts a similar comparison
under varying network condition (replaying Bandwidth Pro�le 1
collected in §7.3).

We observe that DEMS-F outperforms all other four schedulers.
Besides this, in most cases, MinRTT achieves similar performance
compared to round-robin (RR). This is likely explained by two
reasons. First, in our implementation, the round-robin selection
starts with the low-RTT path; starting from the high-RTT path
will in�ate the download time for small� les. Second, since we are
performing bulk data transfer, it is unlikely that both paths have
empty congestion window space at the same time. So during most
of the time both MinRTT and RR have only one choice for path
selection. Figure 18 also indicates the apparent limitation of the
best single-path approach: compared to using multipath, using only
one path signi�cantly in�ates the download time due to insu�cient
bandwidth. Regarding ReMP, it blindly duplicates every byte onto
all sub�ows, making it essentially fall back to the “online” version
of the best single-path approach. While ReMP and DEMS-F both
transmit redundant data, DEMS-F’s reinjection strategy is much
more adaptive and strategic. For a 4MB� le transfer, DEMS-F only
transmits 2% of the redundant bytes sent by ReMP.

7.6 Web Browsing Performance
All experiments so far use� le (raw data chunk) download as the
workload. We now investigate how DEMS helps improve the QoE
of web browsing, one of the most popular applications on mobile

devices. A typical web page may consist of tens of objects, and
downloading them faster would improve the QoE. We conduct
web page loading experiments using o�-the-shelf Chrome browser
(53.0.2785.124) on our Nexus 6p smartphone. We picked 10 popular
websites and use their mobile-version landing pages as the target
web pages. The 10 websites cover diverse categories including news,
education, travel, shopping, and government. We use the page load
time (PLT), which is programmatically measured by the Chrome
debugging interface, as the QoE metric. To make the experiments
reproducible, we use Google Page Replay [3] to take a snapshot
of each landing page and host it on our web server that is near
the multipath proxy (§7.1). We compare the PLT of the 10 landing
pages loaded byDEMS-F and byMinRTT under real-world network
condition. The experiments were performed at a location on our
campus where the RTTs and bandwidths of both WiFi and LTE ex-
perience high variance, similar to the network condition described
in §7.3. We load each web page for 10 times and report the median
PLT. As shown in Figure 19, compared to MinRTT, DEMS brings
the per-page median PLT reduction of 6% to 43% across the 10 pages
(median: 25%). The results indicate that DEMS can signi�cantly
improve the web QoE under real-world settings.

To understand why DEMS helps reduce the PLT, we take a closer
took at the web object transmission pattern. Figure 20 exempli�es
two waterfall diagrams for the same webpage when MinRTT and
DEMS-F are used as the multipath scheduler. As shown, DEMS-F
e�ectively reduces the reception duration (i.e., download time) for
many objects. Since many of them are on the critical path for web
page loading, the overall PLT is e�ectively reduced. Also note that
one key di�erence between� le download and web page loading
is that for the latter, computation and network activities are inter-
leaved. Therefore, although the entire web page may be large, the
web server has to intermittently feed data to the transport layer.
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Figure 20: Example waterfall diagrams for MinRTT and DEMS-F (some objects are
omitted for better illustration).

This naturally forms many small/medium-sized chunks that can be
well optimized by DEMS.

Recall in §5 that an application can interact with DEMS either
using or not using a hint API. Since it is challenging to modify the
Chrome browser source code, we adopt the non-API mode in our
experiments. In reality, since an HTTP(S) persistent connection
may carry multiple web objects back to back, we thus envision
that using the hint API to inform DEMS of the boundary between
objects can provide additional bene�ts of minimizing the delivery
time of each object. We leave this as future work4.

7.7 System Overhead
We compared CPU utilization across the three schedulers: DEMS-F,
MinRTT, and ReMP by running them on the smartphone. The work-
load is to upload a large� le as fast as possible, with the aggregated
bandwidth being around 50Mbps. Compared to the other two sim-
pler schedulers, the additional CPU overhead incurred by DEMS-F
is unnoticeable. For download tra�c, since the mobile device acts
as a receiver, the overhead is even more negligible.

8 DISCUSSIONS
Integration with MPTCP. While we implement DEMS on our
ownmultipath TCP proxy infrastructure,DEMS can also be directly
integrated into MPTCP. Since MPTCP provides a modular scheduler
framework [30], the core logic of DEMS can be implemented as
a new scheduler module. To facilitate OWD measurement (§5),
the receiver side can leverage MPTCP options in TCP headers to
carry necessary information used for estimating OWD at the sender
side. The network prediction functionality can be implemented as
a general API in MPTCP for all schedulers to use.
Applicability. DEMS can work with diverse tra�c patterns and
transfer sizes despite the ideal usage scenario being chunked data
transfer, a very common workload as mentioned in §1. As DEMS
shows the most promise for small-to-medium-size downloads, it
can bene�t a wide range of today’s mobile applications (e.g., video
streaming) that involve downloading chunks from a few hundreds
KBs to a few MBs. For very large� les (e.g., tens of MBs), when the
network bandwidth is limited (a few Mbps), the sub�ow completion
time di�erence is dwarfed by the long download duration, leading
to overall small relative improvement brought by DEMS. Never-
theless, we do expect for future faster networks such as 5G with

4In HTTP/2, objects might be multiplexed together. To handle this, multiplexed objects
can be treated as one chunk.

bandwidth of hundreds of Mbps, DEMS will signi�cantly bene�t
large transfers.
Limitation.We discuss some limitations of DEMS. First, our cur-
rent design focuses on two sub�ows. This was driven by realistically
the most common mobile multipath use cases today. Nevertheless,
the core concepts of DEMS (e.g., chunk-based transfer, simultane-
ous� ow completion, and adaptive reinjection) are also applicable
to more than two paths, though involving more complexities. For
example, instead of using the “two-way” splitting, each sub�ow can
transmit packets in an interleaved (but still decoupled) manner. To
achieve simultaneous sub�ow completion, a sub�ow can decide to
stop transmission if the remaining data in the meta bu�er can be
delivered earlier by some other sub�ows with smaller OWD (some
coordination algorithms need to be developed). In this way, at the
sender side, the sub�ow with the largest and the smallest OWD
will be the� rst and the last� nishing sub�ow, respectively. This
can compensate the delay di�erences among the sub�ows, leading
to simultaneous sub�ow completion at the receiver side. We leave
�eshing out the details on this to future work.

Second, the current DEMS design focuses primarily on improving
download time, a critical factor impacting user QoE. In the future,
we plan to explore additional dimensions like energy and limiting
data usage on a particular sub�ow. This could possibly be done by
adopting concepts from other special-purpose schedulers such as
energy-aware [36] and sub�ow-priority-aware [17] schedulers.

9 CONCLUSION
Compared to single-path, multipath transport brings more complex-
ities due to not only more involved paths but also their sophisticated
interactions. Through judicious algorithm design, system integra-
tion, and extensive evaluation, we demonstrate that by strategically
scheduling the packets, we can improve the multipath performance
signi�cantly (e.g., median download time reduction of 33%–48% for
fetching� les and median loading time reduction of 6%–43% for
fetching web pages under real-world settings compared toMinRTT).
In our future work, we plan to extend DEMS in several aspects (§8).
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